New Results on the Distance Between a Segment and \mathbb{Z}^2 . Application to the Exact Rounding

Vincent LEFÈVRE

Loria / INRIA Lorraine

Arith'17

June 27–29, 2005

Introduction / Outline

1976: More general case (Hirschberg and Wong).

1997: Find a lower bound on the distance between a segment and \mathbb{Z}^2 . I presented a first *efficient* algorithm (with low-level operations). Complex proof. In fact, *exact* distance on a larger domain.

- \rightarrow A more geometrical and intuitive proof.
- \rightarrow A variant/improvement of the algorithm.
- \rightarrow Timings (comparisons of various forms of the algorithms).

 \rightarrow Comparison with an implementation (wclr22) of the SLZ algorithm (Arith'16).

The Problem (Without Details)

Goal: the exhaustive test of the elementary functions for the TMD in a fixed precision (e.g., in double precision), i.e. "find the breakpoint numbers x such that f(x) is very close to a breakpoint number".

Breakpoint number: machine number or "half-machine number".

In each interval:

- *f* approached by a polynomial of degree $1 \rightarrow \text{segment } y = b ax$.
- Multiplication of the coordinates by powers of $2 \rightarrow \text{grid} = \mathbb{Z}^2$.

One searches for the values n such that $\{b - n.a\} < d_0$, where a, b and d_0 are real numbers and $n \in [[0, N - 1]]$.

 $\{x\}$ denotes the positive fractional part of x.

- We chose a positive fractional part instead of centered. \rightarrow An upward shift is taken into account in *b* and *d*₀.
- If *a* is rational, then the sequence 0.*a*, 1.*a*, 2.*a*, 3.*a*, ... (modulo 1) is periodical.
 - \rightarrow This makes the theoretical analysis more difficult.
 - \rightarrow In the proof, one assumes *a* irrational, or equivalently, a rational number + an arbitrary small irrational number.
 - But in the implementation, *a* is rational.
 - \rightarrow Extension to rational numbers by continuity.
 - \rightarrow Care has been taken with the inequalities (strict or not).

Notations / Properties

Configuration properties to be proved by induction:

- Intervals $x_0, x_1, \ldots, x_{u-1}$ of length x, where x_0 is the left-most interval and $x_r = x_0 + r.a$ (translation by r.a modulo 1).
- Intervals $y_0, y_1, \ldots, y_{v-1}$ of length y, where y_0 is the right-most interval and $y_r = y_0 + r.a$ (translation by r.a modulo 1).
- Total number of points (or intervals): n = u + v.

Initial configuration: n = 2, u = v = 1.

From a Configuration to the Next One

- Since *a* is irrational, *n*.*a* is strictly between 2 points of smaller indices, one of which, denoted *r* is non zero.
- Therefore the points of indices *r* − 1 and *n* − 1 (obtained by a translation) are adjacent, and their distance *l* is either *x* or *y*.
 → Same distance *l* between the points of indices *r* and *n*.
- Thus the new point *n* splits an interval of length $h = \max(x, y)$ into 2 intervals of respective lengths $\ell = \min(x, y)$ and $h \ell$.
- The length *h* − *ℓ* is new, therefore the corresponding interval does not have an inverse image (i.e. by adding −*a*).
- Therefore this interval has as a boundary point of index 0.

 \rightarrow As a consequence, the point of index *n* is completely determined. The other intervals of length *h* will be split in the same way, one after the other with increasing indices (translations by *a*).

- Indices of the intervals of length *h* − *l*: these are the indices of the corresponding intervals of length *h*.
- Indices of the intervals of length *l*: assume that *l* = *x* (same reasoning for *l* = *y*); the first interval of length *x* is obtained by a translation of an old interval of length *x* (as shown in previous slide), necessarily *x*_{*u*-1} (the last one) since the image of *x*_{*i*-1} is *x*_{*i*} for all *i* < *u*. Thus this interval is *x*_{*u*} and we have *x*_{*u*} = *x*₀ + *u*.*a*. The next intervals: *x*_{*u*+1}, *x*_{*u*+2}, etc.

Algorithms

Basic algorithm (1997): returns a lower bound on $\{b - n.a\}$ (in our context, $\ge d_0$ in most cases, allowing to immediately conclude that there are no points such that $\{b - n.a\} < d_0$).

New algorithm (mentioned in 1998): returns the index n < N of the first point such that $\{b - n.a\} < d_0$, otherwise any value $\ge N$ if there are no such points.

We are interested only in the position of *b* amongst the other points. \rightarrow Just keep the necessary data...

The necessary data:

- lengths *x* and *y*, numbers *u* and *v* of these intervals;
- a binary value saying whether *b* is in an interval of length *x* or *y*;
- the index *r* of this interval (new algorithm only);
- the distance *d* between *b* and the lower boundary of this interval.

Immediate consequence of the properties:

- The lower boundary of an interval x_r has index r.
- The lower boundary of an interval y_r has index u + r.

Algorithm (Subtractive Version)

Initialization: $x = \{a\}; y = 1 - \{a\}; d = \{b\}; u = v = 1; r = 0;$

if $(d < d_0)$ return 0

Unconditional loop:

if
$$(d < x)$$
elsewhile $(x < y)$ if $(u + v \ge N)$ return N $y = y - x; u = u + v;$ if $(d < d_0)$ return $r + u$ if $(u + v \ge N)$ return N while $(y < x)$ $x = x - y;$ if $(u + v \ge N)$ return N $x = x - y;$ if $(u + v \ge N)$ return N $v = v + u;$ if $(u + v \ge N)$ return N $v = v + u;$ if $(u + v \ge N)$ return N $v = v + u;$ if $(u + v \ge N)$ return N $v = v + u;$ $v = v + v;$ $v = v + v;$

Timings: Notations

 Option c=k: subtractions are replaced by a single division when one needs to do at least 2^k subtractions without modifying the value d (-: subtractive algorithm only).

•	Algo selection:
---	-----------------

	—	1=3	W	old w
default	basic	basic	basic	new
if failed	naive	split	new	
if failed		naive		

8-split: the interval is split into $2^3 = 8$ subintervals and the basic algorithm is tried again.

Tests on a 2 GHz AMD Opteron (at MEDICIS).

	($\exp x$, e	xponen	t 0	2^x , exponent 0			
С	_	1=3	W	old w	_	1=3	W	old w
0	42.30	35.46	35.26	(39.22)	37.83	32.95	32.82	(49.24)
1	26.32	19.27	19.09	(18.40)	23.83	18.72	18.67	(20.45)
3	24.09	16.82	16.85	(16.67)	22.21	16.96	17.04	(18.79)
5	24.47	17.29	17.29	(16.76)	23.23	18.03	18.08	(19.04)
—	21.54	14.23	14.26	(15.38)	21.68	16.42	16.52	(18.36)
	$\sin x$, exponent 0				$\cos x$, exponent 0			
С	_	1=3	W	old w	_	1=3	W	old w
0	40.24	31.72	31.67	(42.88)	39.08	33.52	33.51	(36.04)
1	28.28	19.52	19.49	(19.58)	25.87	20.10	20.18	(19.61)
3	26.41	17.54	17.55	(17.72)	22.76	16.93	17.08	(17.11)
5	27.15	18.36	18.32	(17.55)	23.15	17.29	17.47	(17.24)
_	23.71	14.74	14.85	(16.11)	19.99	14.12	14.30	(15.20)

	$\exp x$, exponent -6					2^x , exponent -6			
С	_	1=3	W	old w	_	1=3	W	old w	
0	18.29	18.15	18.09	(59.08)	21.42	21.31	21.27	(81.95)	
1	12.54	12.52	12.51	(18.05)	13.27	13.18	13.16	(22.15)	
3	12.10	11.95	11.86	(17.07)	12.84	12.91	12.68	(21.26)	
5	14.41	14.31	14.16	(17.65)	14.67	14.56	14.54	(22.34)	
	22.13	21.94	21.97	(26.25)	17.62	17.40	17.44	(21.31)	
	$\sin x$, exponent -6				$\cos x$, exponent -6				
С	_	1=3	W	old w	_	1=3	W	old w	
0	15.74	15.56	15.59	(16.21)	15.61	15.43	15.44	(19.10)	
1	10.22	10.06	10.10	(9.79)	10.72	10.57	10.58	(10.74)	
3	9.45	9.25	9.26	(9.33)	10.12	9.99	10.04	(10.58)	
5	9.34	9.16	9.20	(9.30)	10.50	10.30	10.33	(10.72)	
	314.8	314.3	314.6	(369.9)	161.3	161.1	161.1	(188.6)	

	e	$\exp x$, exponent 2									
С	_	- 1=3 w old w									
0	43.55	11.39	9.63	(11.00)							
1	40.00	6.36	5.43	(5.28)							
3	39.37	5.40	4.73	(4.61)							
5	39.47	5.61	4.86	(4.71)							
_	38.82	4.56	4.11	(4.26)							

Note: the domain is 4 times as small as in the previous tables.

On the next slide: $\exp x$, with $x \approx \log(4)$, so that *a* is very close to a "simple" rational number...

		interv	al 50616	6	interval 50624			
С	_	1=3	W	old w	_	1=3	W	old w
0	1.79	1.12	1.15	(1.15)	1.67	1.06	1.03	(1.03)
1	1.44	0.81	0.78	(0.79)	1.37	0.77	0.77	(0.73)
3	1.40	0.77	0.78	(0.77)	1.35	0.72	0.72	(0.70)
5	1.39	0.76	0.76	(0.72)	1.35	0.73	0.70	(0.68)
—	20.63	20.70	20.15	(24.53)	40.42	40.54	40.19	(48.72)
		interv	al 50632	2	interval 50640			
С	_	1=3	W	old w	_	1=3	W	old w
0	1.15	0.59	7.72	(1653)	1.24	0.87	4.70	(708)
1	1.09	0.56	1.75	(279)	1.05	0.70	1.35	(120)
3	1.10	0.58	1.69	(259)	1.04	0.66	1.31	(111)
5	1.04	0.55	1.68	(259)	1.03	0.64	1.26	(111)
	230	230	230	(323)	102	103	103	(137)

Comparison with SLZ (wclr22), 2⁴⁰ Points

test32f: old algorithm, with divisions, and split into 8 subintervals (-1=3) in case of failure, i.e. if the lower bound d is too small.

program	interv.	#bits	rounding	lepuid	ay	marie
test32f	[1/2,]	64	D	23.8	81.8	11.5
test32f	$[1/2,\ldots]$	65	D & N	23.5	80.8	11.4
test32f	$[1,\ldots]$	64	D	26.6	86.8	13.2
test32f	$[1,\ldots]$	65	D & N	23.9	77.5	11.7
wclr22	$[-1/2,\ldots]$	64	Ν	26 – 28	111	12.4

 $D \rightarrow$ for directed rounding modes; $N \rightarrow$ for rounding to nearest.

Machines: lepuid: Athlon; ay: PPC G4; marie: Opteron (MEDICIS).

Conclusion

- Improvements of my algorithm that computes a lower bound on the distance between a segment and \mathbb{Z}^2 . The points with the smallest distance can be found (naive algorithm now useless).
- Can be used to find worst cases for correctly-rounded base conversion, possibly in a limited domain (see the paper).
- For math functions: limitations in the current implementation due to historical reasons. Most parts need a complete rewrite and new proofs (error bounds). But currently...

 \rightarrow Worst cases for correctly-rounded double-precision functions: e^x , 2^x , 10^x , sinh, cosh, sin $(2\pi x)$, cos $(2\pi x)$, $1/x^2$, x^3 ; sin, cos, tan between $-\pi/2$ and $\pi/2$; the corresponding inverse functions.