SIPE: Small Integer Plus Exponent

Vincent LEFEVRE

AriC, INRIA Grenoble — Rhéne-Alpes / LIP, ENS-Lyon

Arith 21, Austin, Texas, USA, 2013-04-09

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]

Introduction: Why SIPE?

All started with floating-point algorithms in radix 2, assuming correct rounding to
nearest:

@ TwoSum: to compute a rounded sum x, = o(a + b) and the error term x;
@ DbIMult!: accurate double-FP multiplication (ap, a¢) x (bp, be);
e Kahan's algorithm to compute the discriminant b?> — ac accurately.

Valid with restrictions on the inputs, e.g.:
@ no special datums (NaN, infinities);

@ no non-zero tiny or huge values in order to avoid exceptions due to the
bounded exponent range (overflow/underflow).

Questions about such algorithms: Correctness? Error bound? Optimality? ...

The answer may be difficult to find, and exhaustive tests in some domain may
help to solve the problem. We need a tool for that. ..

1See Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, by
P. Kornerup, Ch. Lauter, V. Lefévre, N. Louvet, and J.-M. Muller, in TOMS, 2010.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 2/17

Introduction: Testing Floating-Point Algorithms

Exhaustive tests (in some domain) — proofs or reachable error bounds.

Drawbacks:
@ valid only for the considered FP system (the chosen precision);

@ and this may be possible only in very low precisions.

Still useful:

@ try to generalize the results — conjectured error bounds or other properties
for higher precisions;

@ possibly leading to proofs;

@ or counter-examples (in case of errors in pen-and-paper proofs).

No need to take into account special data and exceptions (or this could be
optional if this doesn't slow down the generic cases).

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 3/17

Introduction: Tools Existing Before SIPE

All of them in radix 2.

@ GNU MPFR: correct rounding in any precision p > 2.
OK concerning the behavior, but
> very generic: not specifically optimized for a given precision;
» we had to take into account that different precisions can even be mixed;
» overhead due to exception handling and special data.

— Cannot be as fast as specific software ignoring exceptions.

@ GCC's sreal internal library. But
> no support for negative numbers;
> rounding is roundTiesToAway: to nearest, but not the usual even-rounding
rule for the halfway cases (rounded away from zero);
the precision is more or less hard-coded;
overflow detection, unnecessary in our context;
no FMA support (needed for DbIMult);
apparently, not very optimized.

vYyVvVvy

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 4 /17

SIPE: Small Integer Plus Exponent

o |dea based on DPE (Double Plus Exponent) by Paul Zimmermann and
Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite
floating-point number is represented by a pair of integers (M, E), with the
value M - 2F.

@ Focus on efficiency:
» code written in C (for portability), with some GCC extensions;
> exceptions (in particular overflows/underflows) are ignored, and unsupported
inputs are not detected;
> restriction: the precision must be small enough to have a simple and fast
implementation, without taking integer overflow cases into account. The
maximal precision is deduced from the implementation (and the platform).

@ Currently only the rounding attribute roundTiesToEven (rounding to nearest
with the even rounding rule) is implemented.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 5 /17

SIPE: Encoding

Chosen encoding;:

@ Structure of two native signed integers representing the pair (M, E).
o If M #0 (i.e. x # 0), the representation is normalized: 2P~1 < |M| < 2P — 1.

e If M =0, then we require E = 0 (even though its real value doesn't matter,
we need to avoid integer overflows, e.g. when two exponents are added).

Bound on the precision:

FMA/FMS | 32-bit integers | 64-bit integers
No 15 31
Yes 10 20

Alternative encodings that could have been considered:

@ packed in a single integer or separate significand sign;

o fixed-point representation (— limited exponent range, unpractical);

@ native floating-point format: native operations + Veltkamp's splitting, with

double-rounding effect detection (second Veltkamp's splitting?)... But this
effect cannot occur for +, — and x with small enough p!

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent

Arith 21, Austin, USA, 2013-04-09

6/17

SIPE: Implementation of Some Simple Operations

typedef struct { sipe_int_t i; sipe_exp_t e; } sipe_t;

static inline sipe_t sipe_neg (sipe_t x, int prec)
{ return (sipe_t) { - x.i, x.e }; }

static inline sipe_t sipe_set_si (sipe_int_t x, int prec)
{ sipe_t r={x, 01}

SIPE_ROUND (r, prec);

return r; }

static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)
{ sipe_t r;

r.i =x.i*y.i;

r.e =x.e +y.e;

SIPE_ROUND (r, prec);

return r; }

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 7/17

SIPE: Implementation of Addition and Subtraction

#define SIPE_DEFADDSUB(OP,ADD,QPS)
static inline sipe_t sipe_##0P (sipe_t x, sipe_t y, int prec)
{ sipe_exp_t delta = x.e - y.e;
sipe_t r;
if (SIPE_UNLIKELY (x.i == 0))
return (ADD) ? y : (sipe_t) { - y.i, y.e };
if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1)
return x;
if (delta < - (prec + 1))
return (ADD) 7 y : (sipe_t) { - y.i, y.e };
r = delta < 0 7
((sipe_t) { (x.i) OPS (y.i << - delta), x.e })
((sipe_t) { (x.i << delta) OPS (y.i), y.e });
SIPE_ROUND (r, prec);
return r; }

P A A A A A A A

SIPE_DEFADDSUB(add,1,+)
SIPE_DEFADDSUB(sub,0,-)

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 8 /17

SIPE: Provided Functions

Header file sipe.h providing:

a macro SIPE_ROUND (X,PREC), to round and normalize any pair (i, e);
initialization: via SIPE_ROUND or sipe_set_si;

sipe_neg, sipe_add, sipe_sub, sipe_add_si, sipe_sub_si;
sipe_nextabove and sipe_nextbelow;

sipe_mul, sipe_mul_si, SIPE_2MUL;

sipe_fma and sipe_fms (optional, see slide 6);

sipe_eq, sipe_ne, sipe_le, sipe_1t, sipe_ge, sipe_gt;
sipe_min, sipe_max, sipe_minmag, sipe_maxmag, sipe_cmpmag;

sipe_outbin, sipe_to_int, sipe_to_mpz.

New (2013-04-07/08):
Second implementation, using the native floating-point encoding.
— All the above functions except sipe_fma and sipe_fms.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09

9/17

Example: Minimality of TwoSum in Any Precision

Based on the article On the computation of correctly-rounded sums, by
Peter Kornerup, Vincent Lefévre, Nicolas Louvet and Jean-Michel Muller,
IEEE Transactions on Computers, 2012.

Full version on http://hal.inria.fr/inria-00475279 [RR-7262 (2010)].

Algorithm TwoSum* e Floating-point system in radix 2.
s = RN(a+b) @ Correct rounding in rounding to nearest.
b = RN(s—a) @ Two finite floating-point numbers a and b.
a = RN(s— bl/) — Assuming no overflows, this algorithm computes
gb = g%gb - b,)) two floating-point numbers s and t such that:
= a—a
ta — RN(S, + 6p) s=RN(a+b) and s+t=a+b.
* due to Knuth and Mgller.
Is this algorithm minimal (number of operations + and —, and depth of

the computation DAG) in any precision p > 27

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]

Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 10 / 17

http://hal.inria.fr/inria-00475279

Example: Minimality of TwoSum in Any Precision [2]

The idea: choose the pairs of inputs in some form so that one can prove that a
counter-example in one precision yields a counter-example in all (large enough)

precisions. Choices after testing various pairs, where 1 x denotes nextUp(x), i.e.

the least floating-point number that compares greater than x:
a =18 b =131

=11 b =18
a =3 by = 13

In precision p > 4, this gives, where ¢ = ulp(1) = 2177:

a; = 8+8¢ by = 1+ 3¢
a = 1+5¢ b, = 8+8¢
a3 =3 b3 = 3+ 2¢

Precisions 2 to 12 are tested. Results in precisions p > 13 can be deduced from
the results in precision 12.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09

11 /17

Gain by Using SIPE Instead of GNU MPFR?

Expected gain by using SIPE instead of GNU MPFR?

Timing of individual operations: could be interesting information, but in practice,
one needs to consider the whole program.

Indeed, in real-world tests: need to process each SIPE final result, and this may
take time.

For the proof of minimality (optimality) of TwoSum: rather fast.
@ Pre-computation step: generation of all the algorithms (DAG's).

@ For each SIPE final result: 1 to 4 comparisons with constant values.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 12 /17

Gain by Using SIPE Instead of GNU MPFR? [2]

For the computation of error bounds, for each input:
@ Compute the FP result with SIPE. High speed-up here.
@ Compute the exact value or a good approximation.

© Compare the results. For a relative error, needs a division.

One may think that (2) and (3), which cannot use SIPE, would take most of the
time, so that the speed-up would remain limited. However. ..

o Case of an exhaustive search: if the function is numerically regular enough,
the exact value might be determined very quickly from the previous one, like
in the search for the hardest-to-round cases.

@ But here, in very low precision, this may not work well, as input intervals
contain much fewer FP values per binade.

@ For (3): division not always needed (filtering, low precision, consecutive
inputs. ..).

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 13 /17

Timings

Example with “best” optimizations (Intel Xeon E5520, GCC 4.7.1 + LTO/PGO):

timings (in seconds) ratios
args g | double MPFR SIPE/0 SIPE/1|S/D M/S
126 —| 050 6.45 1.99 199 | 40 32
126 2 0.41 6.79 1.64 169 | 41 41
126 4 0.43 6.80 1.66 168 | 39 41
126 6 0.48 6.85 1.71 173 | 36 4.0
146 - 5.20 49.66 14.94 1487 | 29 3.3
146 2 6.99 53.30 14.27 1448 | 2.1 3.7
146 4 4.78 52.75 13.35 1355 | 28 3.9
146 6 6.74 51.90 13.48 1340 | 2.0 3.9
165 —| 020 1.37 0.42 041 | 21 33
165 2 0.25 1.48 0.41 042 | 1.7 3.6
165 4| 020 1.49 0.41 042 | 21 3.6
165 6 0.23 1.40 0.38 038 | 1.7 3.7

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent

Arith 21, Austin, USA, 2013-04-09

14 /17

Timings [2]

The above timings:

@ For the proof of the minimality of TwoSum (number of operations), i.e. only
add/sub are currently tested.

@ Thus include the overhead for the input data generation and the tests of the
results.

@ Tests with other GCC versions and other machines (see article).

From all these tests, the use of SIPE is

@ between 1.2 and 6 times as slow as the use of the double C floating-point
type, i.e. for p = 53 (incomplete for the proof in precisions p < 11);

@ between 2 and 6 times as fast as the use of MPFR for precision 12.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 15 /17

Timings [3]

With the new version of SIPE on Intel Xeon E5520, GCC 4.7.2 (no LTO):

timings (in seconds)

args g | double MPFR SIPE/O SIPE/1 SIPE/D SIPE/L
126 —| 054 888 202 204 053 0.92
126 2| 040 878 160 172 054 0.82
126 4| 038 883 18 186 050 0.85
126 6| 044 901 18 1.84 048 0.89
146 —| 510 6444 1485 1467 561 12.18
146 2| 792 67490 1457 1450 842 1245
146 4| 652 6578 1564 1605 7.13 11.73
146 6| 700 6584 1520 1540 7.08 12.99
165 —| 019 173 041 040 020 0.40
165 2| 031 194 043 041 0.32 0.42
165 4| 028 1.80 048 050 028 0.40
165 6| 027 176 045 045 026 0.44

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent

Arith 21, Austin, USA, 2013-04-09

16 / 17

Conclusion

SIPE (now Sipe): a “library” whose purpose is to do simple operations in binary
floating-point systems in very low precisions with correct rounding to nearest.

Web page: http://www.vincl7.net/research/sipe/

Future work:

@ Other applications, e.g. minimal DbIMult error bound.
— Pen-and-paper proof (currently almost done for most cases).
— New timings, where multiplication is now involved.

@ Try the floating-point solution. Done on 2013-04-08 except fma/fms.

In the long term, support for:
@ other operations (e.g. division, square root);
o directed rounding;

@ decimal arithmetic.

[arith21.tex 59594 2013-04-09 05:39:35Z vincl7/xvii]
Vincent LEFEVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 17 /17

http://www.vinc17.net/research/sipe/

	Introduction: Why SIPE?
	Introduction: Testing Floating-Point Algorithms
	Introduction: Tools Existing Before SIPE
	SIPE: Small Integer Plus Exponent
	SIPE: Encoding
	SIPE: Implementation of Some Simple Operations
	SIPE: Implementation of Addition and Subtraction
	SIPE: Provided Functions
	Example: Minimality of TwoSum in Any Precision
	Gain by Using SIPE Instead of GNU MPFR?
	Timings
	Conclusion

