
SIPE: Small Integer Plus Exponent

Vincent LEFÈVRE

AriC, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

Arith 21, Austin, Texas, USA, 2013-04-09

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Introduction: Why SIPE?

All started with floating-point algorithms in radix 2, assuming correct rounding to
nearest:

TwoSum: to compute a rounded sum xh = ◦(a + b) and the error term xℓ;

DblMult1: accurate double-FP multiplication (ah, aℓ) × (bh, bℓ);

Kahan’s algorithm to compute the discriminant b2 − ac accurately.

Valid with restrictions on the inputs, e.g.:

no special datums (NaN, infinities);

no non-zero tiny or huge values in order to avoid exceptions due to the
bounded exponent range (overflow/underflow).

Questions about such algorithms: Correctness? Error bound? Optimality? . . .

The answer may be difficult to find, and exhaustive tests in some domain may
help to solve the problem. We need a tool for that. . .

1See Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, by
P. Kornerup, Ch. Lauter, V. Lefèvre, N. Louvet, and J.-M. Muller, in TOMS, 2010.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 2 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Introduction: Testing Floating-Point Algorithms

Exhaustive tests (in some domain) → proofs or reachable error bounds.

Drawbacks:

valid only for the considered FP system (the chosen precision);

and this may be possible only in very low precisions.

Still useful:

try to generalize the results → conjectured error bounds or other properties
for higher precisions;

possibly leading to proofs;

or counter-examples (in case of errors in pen-and-paper proofs).

No need to take into account special data and exceptions (or this could be
optional if this doesn’t slow down the generic cases).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 3 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Introduction: Tools Existing Before SIPE

All of them in radix 2.

GNU MPFR: correct rounding in any precision p ≥ 2.
OK concerning the behavior, but

◮ very generic: not specifically optimized for a given precision;
◮ we had to take into account that different precisions can even be mixed;
◮ overhead due to exception handling and special data.

→ Cannot be as fast as specific software ignoring exceptions.

GCC’s sreal internal library. But
◮ no support for negative numbers;
◮ rounding is roundTiesToAway: to nearest, but not the usual even-rounding

rule for the halfway cases (rounded away from zero);
◮ the precision is more or less hard-coded;
◮ overflow detection, unnecessary in our context;
◮ no FMA support (needed for DblMult);
◮ apparently, not very optimized.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 4 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

SIPE: Small Integer Plus Exponent

Idea based on DPE (Double Plus Exponent) by Paul Zimmermann and
Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite
floating-point number is represented by a pair of integers (M, E), with the
value M · 2E .

Focus on efficiency:
◮ code written in C (for portability), with some GCC extensions;
◮ exceptions (in particular overflows/underflows) are ignored, and unsupported

inputs are not detected;
◮ restriction: the precision must be small enough to have a simple and fast

implementation, without taking integer overflow cases into account. The
maximal precision is deduced from the implementation (and the platform).

Currently only the rounding attribute roundTiesToEven (rounding to nearest
with the even rounding rule) is implemented.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 5 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

SIPE: Encoding

Chosen encoding:

Structure of two native signed integers representing the pair (M, E).

If M 6= 0 (i.e. x 6= 0), the representation is normalized: 2p−1 ≤ |M| ≤ 2p − 1.

If M = 0, then we require E = 0 (even though its real value doesn’t matter,
we need to avoid integer overflows, e.g. when two exponents are added).

Bound on the precision:

FMA/FMS 32-bit integers 64-bit integers

No 15 31

Yes 10 20

Alternative encodings that could have been considered:

packed in a single integer or separate significand sign;

fixed-point representation (→ limited exponent range, unpractical);

native floating-point format: native operations + Veltkamp’s splitting, with
double-rounding effect detection (second Veltkamp’s splitting?). . . But this
effect cannot occur for +, − and × with small enough p!

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 6 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

SIPE: Implementation of Some Simple Operations

typedef struct { sipe_int_t i; sipe_exp_t e; } sipe_t;

static inline sipe_t sipe_neg (sipe_t x, int prec)

{ return (sipe_t) { - x.i, x.e }; }

static inline sipe_t sipe_set_si (sipe_int_t x, int prec)

{ sipe_t r = { x, 0 };

SIPE_ROUND (r, prec);

return r; }

static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)

{ sipe_t r;

r.i = x.i * y.i;

r.e = x.e + y.e;

SIPE_ROUND (r, prec);

return r; }

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 7 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

SIPE: Implementation of Addition and Subtraction

#define SIPE_DEFADDSUB(OP,ADD,OPS) \

static inline sipe_t sipe_##OP (sipe_t x, sipe_t y, int prec) \

{ sipe_exp_t delta = x.e - y.e; \

sipe_t r; \

if (SIPE_UNLIKELY (x.i == 0)) \

return (ADD) ? y : (sipe_t) { - y.i, y.e }; \

if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1) \

return x; \

if (delta < - (prec + 1)) \

return (ADD) ? y : (sipe_t) { - y.i, y.e }; \

r = delta < 0 ? \

((sipe_t) { (x.i) OPS (y.i << - delta), x.e }) : \

((sipe_t) { (x.i << delta) OPS (y.i), y.e }); \

SIPE_ROUND (r, prec); \

return r; }

SIPE_DEFADDSUB(add,1,+)

SIPE_DEFADDSUB(sub,0,-)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 8 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

SIPE: Provided Functions

Header file sipe.h providing:

a macro SIPE_ROUND(X,PREC), to round and normalize any pair (i , e);

initialization: via SIPE_ROUND or sipe_set_si;

sipe_neg, sipe_add, sipe_sub, sipe_add_si, sipe_sub_si;

sipe_nextabove and sipe_nextbelow;

sipe_mul, sipe_mul_si, SIPE_2MUL;

sipe_fma and sipe_fms (optional, see slide 6);

sipe_eq, sipe_ne, sipe_le, sipe_lt, sipe_ge, sipe_gt;

sipe_min, sipe_max, sipe_minmag, sipe_maxmag, sipe_cmpmag;

sipe_outbin, sipe_to_int, sipe_to_mpz.

New (2013-04-07/08):
Second implementation, using the native floating-point encoding.
→ All the above functions except sipe_fma and sipe_fms.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 9 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Example: Minimality of TwoSum in Any Precision

Based on the article On the computation of correctly-rounded sums, by
Peter Kornerup, Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller,
IEEE Transactions on Computers, 2012.

Full version on http://hal.inria.fr/inria-00475279 [RR-7262 (2010)].

Algorithm TwoSum*

s = RN(a + b)
b′ = RN(s − a)
a′ = RN(s − b′)
δb = RN(b − b′)
δa = RN(a − a′)
t = RN(δa + δb)

Floating-point system in radix 2.

Correct rounding in rounding to nearest.

Two finite floating-point numbers a and b.

→ Assuming no overflows, this algorithm computes
two floating-point numbers s and t such that:

s = RN(a + b) and s + t = a + b.

* due to Knuth and Møller.

Is this algorithm minimal (number of operations + and −, and depth of
the computation DAG) in any precision p ≥ 2?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 10 / 17

http://hal.inria.fr/inria-00475279

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Example: Minimality of TwoSum in Any Precision [2]

The idea: choose the pairs of inputs in some form so that one can prove that a
counter-example in one precision yields a counter-example in all (large enough)
precisions. Choices after testing various pairs, where ↑ x denotes nextUp(x), i.e.
the least floating-point number that compares greater than x :

a1 = ↑ 8 b1 = ↑3 1
a2 = ↑5 1 b2 = ↑ 8
a3 = 3 b3 = ↑ 3

In precision p ≥ 4, this gives, where ε = ulp(1) = 21−p:

a1 = 8 + 8 ε b1 = 1 + 3 ε

a2 = 1 + 5 ε b2 = 8 + 8 ε

a3 = 3 b3 = 3 + 2 ε

Precisions 2 to 12 are tested. Results in precisions p ≥ 13 can be deduced from
the results in precision 12.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 11 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Gain by Using SIPE Instead of GNU MPFR?

Expected gain by using SIPE instead of GNU MPFR?

Timing of individual operations: could be interesting information, but in practice,
one needs to consider the whole program.

Indeed, in real-world tests: need to process each SIPE final result, and this may
take time.

For the proof of minimality (optimality) of TwoSum: rather fast.

Pre-computation step: generation of all the algorithms (DAG’s).

For each SIPE final result: 1 to 4 comparisons with constant values.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 12 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Gain by Using SIPE Instead of GNU MPFR? [2]

For the computation of error bounds, for each input:
1 Compute the FP result with SIPE. High speed-up here.
2 Compute the exact value or a good approximation.
3 Compare the results. For a relative error, needs a division.

One may think that (2) and (3), which cannot use SIPE, would take most of the
time, so that the speed-up would remain limited. However. . .

Case of an exhaustive search: if the function is numerically regular enough,
the exact value might be determined very quickly from the previous one, like
in the search for the hardest-to-round cases.

But here, in very low precision, this may not work well, as input intervals
contain much fewer FP values per binade.

For (3): division not always needed (filtering, low precision, consecutive
inputs. . .).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 13 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Timings
Example with “best” optimizations (Intel Xeon E5520, GCC 4.7.1 + LTO/PGO):

timings (in seconds) ratios

args g double MPFR SIPE/0 SIPE/1 S/D M/S

1 2 6 − 0.50 6.45 1.99 1.99 4.0 3.2

1 2 6 2 0.41 6.79 1.64 1.69 4.1 4.1

1 2 6 4 0.43 6.80 1.66 1.68 3.9 4.1

1 2 6 6 0.48 6.85 1.71 1.73 3.6 4.0

1 4 6 − 5.20 49.66 14.94 14.87 2.9 3.3

1 4 6 2 6.99 53.30 14.27 14.48 2.1 3.7

1 4 6 4 4.78 52.75 13.35 13.55 2.8 3.9

1 4 6 6 6.74 51.90 13.48 13.40 2.0 3.9

1 6 5 − 0.20 1.37 0.42 0.41 2.1 3.3

1 6 5 2 0.25 1.48 0.41 0.42 1.7 3.6

1 6 5 4 0.20 1.49 0.41 0.42 2.1 3.6

1 6 5 6 0.23 1.40 0.38 0.38 1.7 3.7

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 14 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Timings [2]

The above timings:

For the proof of the minimality of TwoSum (number of operations), i.e. only
add/sub are currently tested.

Thus include the overhead for the input data generation and the tests of the
results.

Tests with other GCC versions and other machines (see article).

From all these tests, the use of SIPE is

between 1.2 and 6 times as slow as the use of the double C floating-point
type, i.e. for p = 53 (incomplete for the proof in precisions p ≤ 11);

between 2 and 6 times as fast as the use of MPFR for precision 12.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 15 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Timings [3]
With the new version of SIPE on Intel Xeon E5520, GCC 4.7.2 (no LTO):

timings (in seconds)

args g double MPFR SIPE/0 SIPE/1 SIPE/D SIPE/L

1 2 6 − 0.54 8.88 2.02 2.04 0.53 0.92

1 2 6 2 0.40 8.78 1.69 1.72 0.54 0.82

1 2 6 4 0.38 8.83 1.84 1.86 0.50 0.85

1 2 6 6 0.44 9.01 1.86 1.84 0.48 0.89

1 4 6 − 5.19 64.44 14.85 14.67 5.61 12.18

1 4 6 2 7.92 67.49 14.57 14.50 8.42 12.45

1 4 6 4 6.52 65.78 15.64 16.05 7.13 11.73

1 4 6 6 7.00 65.84 15.20 15.40 7.08 12.99

1 6 5 − 0.19 1.73 0.41 0.40 0.20 0.40

1 6 5 2 0.31 1.94 0.43 0.41 0.32 0.42

1 6 5 4 0.28 1.89 0.48 0.50 0.28 0.40

1 6 5 6 0.27 1.76 0.45 0.45 0.26 0.44

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 16 / 17

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Conclusion

SIPE (now Sipe): a “library” whose purpose is to do simple operations in binary
floating-point systems in very low precisions with correct rounding to nearest.

Web page: http://www.vinc17.net/research/sipe/

Future work:

Other applications, e.g. minimal DblMult error bound.
→ Pen-and-paper proof (currently almost done for most cases).
→ New timings, where multiplication is now involved.

Try the floating-point solution. Done on 2013-04-08 except fma/fms.

In the long term, support for:

other operations (e.g. division, square root);

directed rounding;

decimal arithmetic.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) SIPE: Small Integer Plus Exponent Arith 21, Austin, USA, 2013-04-09 17 / 17

http://www.vinc17.net/research/sipe/

	Introduction: Why SIPE?
	Introduction: Testing Floating-Point Algorithms
	Introduction: Tools Existing Before SIPE
	SIPE: Small Integer Plus Exponent
	SIPE: Encoding
	SIPE: Implementation of Some Simple Operations
	SIPE: Implementation of Addition and Subtraction
	SIPE: Provided Functions
	Example: Minimality of TwoSum in Any Precision
	Gain by Using SIPE Instead of GNU MPFR?
	Timings
	Conclusion

