SIPE: Small Integer Plus Exponent

Vincent LEFÈVRE

AriC, INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon

Arith 21, Austin, Texas, USA, 2013-04-09

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Introduction: Why SIPE?

All started with floating-point algorithms in radix 2, assuming correct rounding to nearest:

- TwoSum: to compute a rounded sum $x_h = \circ(a + b)$ and the error term x_ℓ ;
- DblMult¹: accurate double-FP multiplication $(a_h, a_\ell) \times (b_h, b_\ell)$;
- Kahan's algorithm to compute the discriminant $b^2 ac$ accurately.

Valid with restrictions on the inputs, e.g.:

- no special datums (NaN, infinities);
- no non-zero tiny or huge values in order to avoid exceptions due to the bounded exponent range (overflow/underflow).

Questions about such algorithms: Correctness? Error bound? Optimality? ...

The answer may be difficult to find, and exhaustive tests in some domain may help to solve the problem. We need a tool for that...

¹See Computing Correctly Rounded Integer Powers in Floating-Point Arithmetic, by P. Kornerup, Ch. Lauter, V. Lefèvre, N. Louvet, and J.-M. Muller, in TOMS, 2010.

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

イロト 不得 トイヨト イヨト

Introduction: Testing Floating-Point Algorithms

Exhaustive tests (in some domain) \rightarrow proofs or reachable error bounds.

Drawbacks:

- valid only for the considered FP system (the chosen precision);
- and this may be possible only in very low precisions.

Still useful:

- $\bullet\,$ try to generalize the results \to conjectured error bounds or other properties for higher precisions;
- possibly leading to proofs;
- or counter-examples (in case of errors in pen-and-paper proofs).

No need to take into account special data and exceptions (or this could be optional if this doesn't slow down the generic cases).

Introduction: Tools Existing Before SIPE

All of them in radix 2.

- GNU MPFR: correct rounding in any precision p ≥ 2. OK concerning the behavior, but
 - very generic: not specifically optimized for a given precision;
 - we had to take into account that different precisions can even be mixed;
 - overhead due to exception handling and special data.
 - \rightarrow Cannot be as fast as specific software ignoring exceptions.
- GCC's sreal internal library. But
 - no support for negative numbers;
 - rounding is roundTiesToAway: to nearest, but not the usual even-rounding rule for the halfway cases (rounded away from zero);
 - the precision is more or less hard-coded;
 - overflow detection, unnecessary in our context;
 - no FMA support (needed for DblMult);
 - apparently, not very optimized.

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

< 日 > < 同 > < 三 > < 三 > 、

SIPE: Small Integer Plus Exponent

- Idea based on DPE (Double Plus Exponent) by Paul Zimmermann and Patrick Pélissier: a header file (.h) providing the arithmetic, where a finite floating-point number is represented by a pair of integers (M, E), with the value $M \cdot 2^E$.
- Focus on efficiency:
 - ▶ code written in C (for portability), with some GCC extensions;
 - exceptions (in particular overflows/underflows) are ignored, and unsupported inputs are not detected;
 - restriction: the precision must be small enough to have a simple and fast implementation, without taking integer overflow cases into account. The maximal precision is deduced from the implementation (and the platform).
- Currently only the rounding attribute roundTiesToEven (rounding to nearest with the even rounding rule) is implemented.

イロト イヨト イヨト

SIPE: Encoding

Chosen encoding:

- Structure of two native signed integers representing the pair (M, E).
- If $M \neq 0$ (i.e. $x \neq 0$), the representation is normalized: $2^{p-1} \leq |M| \leq 2^p 1$.
- If M = 0, then we require E = 0 (even though its real value doesn't matter, we need to avoid integer overflows, e.g. when two exponents are added).

FMA/FMS	32-bit integers	64-bit integers				
No	15	31				
Yes	10	20				

Bound on the precision:

Alternative encodings that could have been considered:

- packed in a single integer or separate significand sign;
- fixed-point representation (\rightarrow limited exponent range, unpractical);
- native floating-point format: native operations + Veltkamp's splitting, with double-rounding effect detection (second Veltkamp's splitting?)... But this effect cannot occur for +, and \times with small enough p!

イロト 不得 トイヨト イヨト

SIPE: Implementation of Some Simple Operations

```
typedef struct { sipe_int_t i; sipe_exp_t e; } sipe_t;
```

```
static inline sipe_t sipe_neg (sipe_t x, int prec)
{ return (sipe_t) { - x.i, x.e }; }
```

```
static inline sipe_t sipe_set_si (sipe_int_t x, int prec)
{ sipe_t r = { x, 0 };
   SIPE_ROUND (r, prec);
   return r; }
```

```
static inline sipe_t sipe_mul (sipe_t x, sipe_t y, int prec)
{ sipe_t r;
    r.i = x.i * y.i;
    r.e = x.e + y.e;
    SIPE_ROUND (r, prec);
    return r; }
```

SIPE: Implementation of Addition and Subtraction

```
#define SIPE DEFADDSUB(OP, ADD, OPS)
  static inline sipe t sipe ##OP (sipe t x, sipe t y, int prec) \setminus
  { sipe exp t delta = x.e - y.e;
    sipe t r;
    if (SIPE UNLIKELY (x.i == 0))
      return (ADD) ? y : (sipe t) { - y.i, y.e };
    if (SIPE_UNLIKELY (y.i == 0) || delta > prec + 1)
      return x:
    if (delta < - (prec + 1))
      return (ADD) ? y : (sipe t) { - y.i, y.e };
    r = delta < 0?
      ((sipe_t) { (x.i) OPS (y.i << - delta), x.e }) :
      ((sipe_t) { (x.i << delta) OPS (y.i), y.e });
    SIPE_ROUND (r, prec);
    return r; }
SIPE DEFADDSUB(add,1,+)
SIPE DEFADDSUB(sub,0,-)
```

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SIPE: Provided Functions

Header file sipe.h providing:

- a macro SIPE_ROUND(X, PREC), to round and normalize any pair (*i*, *e*);
- initialization: via SIPE_ROUND or sipe_set_si;
- sipe_neg, sipe_add, sipe_sub, sipe_add_si, sipe_sub_si;
- sipe_nextabove and sipe_nextbelow;
- sipe_mul, sipe_mul_si, SIPE_2MUL;
- sipe_fma and sipe_fms (optional, see slide 6);
- sipe_eq, sipe_ne, sipe_le, sipe_lt, sipe_ge, sipe_gt;
- sipe_min, sipe_max, sipe_minmag, sipe_maxmag, sipe_cmpmag;
- sipe_outbin, sipe_to_int, sipe_to_mpz.

New (2013-04-07/08):

Second implementation, using the native floating-point encoding. \rightarrow All the above functions except sipe_fma and sipe_fms.

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

イロト 不得 トイヨト イヨト 二日

Example: Minimality of TwoSum in Any Precision

Based on the article *On the computation of correctly-rounded sums*, by Peter Kornerup, Vincent Lefèvre, Nicolas Louvet and Jean-Michel Muller, IEEE Transactions on Computers, 2012.

Full version on http://hal.inria.fr/inria-00475279 [RR-7262 (2010)].

Algorithm TwoSum*

$$s = RN(a + b)$$

$$b' = RN(s - a)$$

$$a' = RN(s - b')$$

$$\delta_b = RN(b - b')$$

$$\delta_a = RN(a - a')$$

$$t = RN(\delta_a + \delta_b)$$

- Floating-point system in radix 2.
- Correct rounding in rounding to nearest.
- Two finite floating-point numbers a and b.

 \rightarrow Assuming no overflows, this algorithm computes two floating-point numbers *s* and *t* such that:

s = RN(a+b) and s+t = a+b.

* due to Knuth and Møller.

Is this algorithm minimal (number of operations + and -, and depth of the computation DAG) in any precision $p \ge 2$?

arith21.tex 59594 2013-04-09 05:39:35Z vinc1	7/xvii]	• •		◆夏≯	< 厘 ▶	2	୬୯୯
Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)	SIPE: Small Integer Plus Exponent		Arith 21,	Austin, US/	A, 2013-04	-09	10 / 17

Example: Minimality of TwoSum in Any Precision [2]

The idea: choose the pairs of inputs in some form so that one can prove that a counter-example in one precision yields a counter-example in all (large enough) precisions. Choices after testing various pairs, where $\uparrow x$ denotes nextUp(x), i.e. the least floating-point number that compares greater than x:

$$egin{array}{rcl} a_1 &=& \uparrow 8 & b_1 &=& \uparrow^3 1 \ a_2 &=& \uparrow^5 1 & b_2 &=& \uparrow 8 \ a_3 &=& 3 & b_3 &=& \uparrow 3 \end{array}$$

In precision $p \ge 4$, this gives, where $\varepsilon = ulp(1) = 2^{1-p}$:

$a_1 = 8 + 8 \varepsilon$	$b_1 = 1 + 3 \varepsilon$
$a_2 = 1 + 5 \varepsilon$	$b_2 = 8 + 8 \varepsilon$
$a_3 = 3$	$b_3 = 3 + 2\varepsilon$

Precisions 2 to 12 are tested. Results in precisions $p \ge 13$ can be deduced from the results in precision 12.

arith21.tex 59594 2013-04-09 05:39:35Z vinc1	7/xvii]	< □	▶ ▲ 🗗 ▶	◆夏▶ ◆夏▶	12	$\mathcal{O}\mathcal{Q}$
Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)	SIPE: Small Integer Plus Exponent		Arith 21, A	Austin, USA, 2013-0	4-09	11 / 17

Gain by Using SIPE Instead of GNU MPFR?

Expected gain by using SIPE instead of GNU MPFR?

Timing of individual operations: could be interesting information, but in practice, one needs to consider the whole program.

Indeed, in real-world tests: need to process each SIPE final result, and this may take time.

For the proof of minimality (optimality) of TwoSum: rather fast.

- Pre-computation step: generation of all the algorithms (DAG's).
- For each SIPE final result: 1 to 4 comparisons with *constant* values.

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

< ロ > < 同 > < 回 > < 回 >

Gain by Using SIPE Instead of GNU MPFR? [2]

For the computation of error bounds, for each input:

- **O** Compute the FP result with SIPE. High speed-up here.
- Ompute the exact value or a good approximation.
- Sompare the results. For a relative error, needs a division.

One may think that (2) and (3), which cannot use SIPE, would take most of the time, so that the speed-up would remain limited. However...

- Case of an exhaustive search: if the function is numerically regular enough, the exact value might be determined very quickly from the previous one, like in the search for the hardest-to-round cases.
- But here, in very low precision, this may not work well, as input intervals contain much fewer FP values per binade.
- For (3): division not always needed (filtering, low precision, consecutive inputs...).

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

イロト 不得 トイヨト イヨト 二日

Timings

Example with "best" optimizations (Intel Xeon E5520, GCC 4.7.1 + LTO/PGO):

		t	ratios				
args	g	double	MPFR	SIPE/0	SIPE/1	S/D	M/S
126	_	0.50	6.45	1.99	1.99	4.0	3.2
126	2	0.41	6.79	1.64	1.69	4.1	4.1
126	4	0.43	6.80	1.66	1.68	3.9	4.1
126	6	0.48	6.85	1.71	1.73	3.6	4.0
146	_	5.20	49.66	14.94	14.87	2.9	3.3
146	2	6.99	53.30	14.27	14.48	2.1	3.7
146	4	4.78	52.75	13.35	13.55	2.8	3.9
146	6	6.74	51.90	13.48	13.40	2.0	3.9
165	_	0.20	1.37	0.42	0.41	2.1	3.3
165	2	0.25	1.48	0.41	0.42	1.7	3.6
165	4	0.20	1.49	0.41	0.42	2.1	3.6
165	6	0.23	1.40	0.38	0.38	1.7	3.7

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent

Arith 21, Austin, USA, 2013-04-09

14 / 17

Timings [2]

The above timings:

- For the proof of the minimality of TwoSum (number of operations), i.e. only add/sub are currently tested.
- Thus include the overhead for the input data generation and the tests of the results.
- Tests with other GCC versions and other machines (see article).

From all these tests, the use of SIPE is

- between 1.2 and 6 times as slow as the use of the double C floating-point type, i.e. for p = 53 (incomplete for the proof in precisions $p \le 11$);
- between 2 and 6 times as fast as the use of MPFR for precision 12.

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

< ロ > < 同 > < 回 > < 回 >

Timings [3]

With the new version of SIPE on Intel Xeon E5520, GCC 4.7.2 (no LTO):

		timings (in seconds)							
args	g	double	MPFR	SIPE/0	SIPE/1	SIPE/D	SIPE/L		
126	_	0.54	8.88	2.02	2.04	0.53	0.92		
126	2	0.40	8.78	1.69	1.72	0.54	0.82		
126	4	0.38	8.83	1.84	1.86	0.50	0.85		
126	6	0.44	9.01	1.86	1.84	0.48	0.89		
146	_	5.19	64.44	14.85	14.67	5.61	12.18		
146	2	7.92	67.49	14.57	14.50	8.42	12.45		
146	4	6.52	65.78	15.64	16.05	7.13	11.73		
146	6	7.00	65.84	15.20	15.40	7.08	12.99		
165	_	0.19	1.73	0.41	0.40	0.20	0.40		
165	2	0.31	1.94	0.43	0.41	0.32	0.42		
165	4	0.28	1.89	0.48	0.50	0.28	0.40		
165	6	0.27	1.76	0.45	0.45	0.26	0.44		

[arith21.tex 59594 2013-04-09 05:39:35Z vinc17/xvii]

▲ロト★週ト★店と★店と「店」の

16 / 17

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon)

SIPE: Small Integer Plus Exponent

Arith 21, Austin, USA, 2013-04-09

Conclusion

SIPE (now Sipe): a "library" whose purpose is to do simple operations in binary floating-point systems in very low precisions with correct rounding to nearest.

```
Web page: http://www.vinc17.net/research/sipe/
```

Future work:

- Other applications, e.g. minimal DblMult error bound.
 - \rightarrow Pen-and-paper proof (currently almost done for most cases).
 - \rightarrow New timings, where multiplication is now involved.
- Try the floating-point solution. Done on 2013-04-08 except fma/fms.

In the long term, support for:

- other operations (e.g. division, square root);
- directed rounding;
- decimal arithmetic.

Vincent LEFÈVRE (INRIA / LIP. ENS-Lvon)

< □ > < 同 > < 三 > < 三 >