Correctly Rounded Arbitrary-Precision Floating-Point Summation

Vincent LEFĖVRE

AriC, Inria Grenoble - Rhône-Alpes / LIP, ENS-Lyon

ARITH 23, Santa Clara, CA, USA 2016-07-11

Introduction to GNU MPFR

Goal: complete rewrite of the mpfr_sum function for the future GNU MPFR 4.

GNU MPFR in a few words:

- An efficient multiple-precision floating-point library with correct rounding (and signed zeros, infinities, NaN , and exceptions, but no subnormals).
- Radix 2. Each number has it own precision $\geqslant 1$ (or 2 before MPFR 4).
- 5 rounding modes: nearest-even; toward $-\infty,+\infty, 0$; away from zero. The functions return the sign of the error: ternary value.

About the GNU MPFR internals:

- Based on GNU MP, mainly the low-level mpn layer. A multiple-precision natural number: array of 32 -bit or 64 -bit integers, called limbs.
- Representation of a floating-point number with 3 fields: sign, significand (array of limbs, with value in $\left[1 / 2,1\left[\right.\right.$), exponent in $\llbracket 1-2^{62}, 2^{62}-1 \rrbracket$. Special data represented with special values in the exponent field.
mpfr_sum: correctly rounded sum of N numbers ($N \geqslant 0$).

The Old mpfr_sum Implementation

Demmel and Hida's accurate summation algorithm + Ziv loop.
MPFR 3.1.3 [2015-06] and earlier: mpfr_sum was buggy with different precisions. Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).

Performance issues:

- The working precision must be the same for all inputs and the output. \rightarrow The maximum precision had to be chosen as the base precision (bug fix).
- The exact result may be very close to a breakpoint. Uncommon case, but. . . Large exponent range \rightarrow critical issue (e.g., crashes due to lack of memory).
- High-level for MPFR (mpfr_add calls). \rightarrow Prevents good optimization.

Specification (behavior) issues:

- The sign of an exact zero result is not specified.
- The ternary value is valid only when zero is returned: for some exact results, one knows that they are exact, otherwise one has no information.

The New mpfr_sum Algorithm and Implementation

Goals:

- As fast as possible. In particular, the exponent range should no longer matter. \rightarrow Low level (mpn), based on the representation of the numbers.
- Completely specified. Exact result 0: same sign as a succession of binary + .

Basic ideas: [r10503, 2016-06-24]
(1) Handle special inputs (NaN , infinities, only zeros, $N_{\text {regular }} \leqslant 2$). Otherwise:
(2) Single memory allocation (stack or heap): accumulator, temporary area..
(3) Fixed-point accumulation by blocks in some window 【minexp, maxexp』 (re-iterate with a shifted window in case of cancellation): sum_raw.
Done in two's complement representation.
(1) If the Table Maker's Dilemma (TMD) occurs, then compute the sign of the error term by using the same method (sum_raw) in a low precision.

- Copy/shift the truncated result to the destination (normalized).
(0) Convert to sign + magnitude, with correction term at the same time.

The New mpfr_sum: An Example

Just an example (not the common case), covering most issues (cancellations...).

Simplification for readability:

- Small blocks (may be impossible in practice: the accumulator size is a multiple of the limb size, i.e. 32 or 64).
- The numbers are ordered (in the algorithm, there are loops over all the numbers and the order does not matter).
- We will not show the accumulator, just what is computed at each step.

The New mpfr_sum: An Example [2]

MPFR_RNDN (roundTiesToEven), output precision sq $=4$.
$N_{\text {regular }}=10$ input numbers, each with its own precision:

$x_{0}=+0.1011101000010 \cdot 2^{0}$	+1011101000010
$x_{1}=-0.10001 \cdot 2^{0}$	-10001
$x_{2}=-0.11000011 \cdot 2^{-2}$	-
$x_{3}=-0.11101 \cdot 2^{-8}$	-
x_{3}	-00011
$x_{4}=-0.11010 \cdot 2^{-9}$	-

$x_{5}=+0.10101 \cdot 2^{-1000}$
$x_{6}=+0.10001 \cdot 2^{-2000}$
$x_{7}=-0.10001 \cdot 2^{-2000}$
$x_{8}=-0.10000 \cdot 2^{-3000}$
$x_{9}=+0.10000 \cdot 2^{-4000}$

The New mpfr_sum: An Example [3]

First iteration: \llbracket minexp, $\operatorname{maxexp} \llbracket=\llbracket-8,0 \llbracket$ (maxexp: chosen from the maximum exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:

```
\ulcorner minexp = -8
+ 10111010[00010]
- }1000
- 110000[11]
```

. . 000000010
(If the signs were reversed: . . .111111110, e = -7)

$$
\llcorner e=-6
$$

During the same loop over all the input numbers, we compute the next maxexp: Let $\mathcal{T}=\left\{i: Q\left(x_{i}\right)<\right.$ minexp $\}$, where $Q(x)$ is the exponent of the last bit of x, be the indices of the inputs that have not been fully taken into account. Then

$$
\operatorname{maxexp} 2=\sup _{i \in \mathcal{T}} \min \left(E\left(x_{i}\right), \text { minexp }\right)=\operatorname{minexp}=-8
$$

The New mpfr_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound: $N_{\text {regular }} \cdot 2^{\text {maxexp } 2}$, or $2^{\text {err }}$ with err $=$ maxexp $2+\left\lceil\log _{2}\left(N_{\text {regular }}\right)\right\rceil$.

The accuracy test is of the form: e-err \geqslant prec, where prec is (currently) $\mathrm{sq}+3=7$. Here, e - err $=(-6)-(-8)-\left\lceil\log _{2}\left(N_{\text {regular }}\right)\right\rceil \leqslant 0<$ prec.
\rightarrow We need at least another iteration.
Second iteration: \llbracket minexp, $\operatorname{maxexp} \llbracket=\llbracket-17,-8 \llbracket$.

$$
\text { . . . } 0010
$$

$$
\leftarrow \text { previous sum (shifted in the accumulator) }
$$

... 0000000000000
Full cancellation (here with a big gap: maxexp $2=-1000 \ll \operatorname{minexp}$).
\rightarrow New iteration with maxexp $:=$ maxexp2 just like in the first iteration.

The New mpfr_sum: An Example [5]

The next and last 5 input numbers:

$$
\begin{aligned}
& x_{5}=+0.10101 \cdot 2^{-1000} \\
& x_{6}=+0.10001 \cdot 2^{-2000} \\
& x_{7}=-0.10001 \cdot 2^{-2000} \\
& x_{8}=-0.10000 \cdot 2^{-3000} \\
& x_{9}=+0.10000 \cdot 2^{-4000}
\end{aligned}
$$

Third iteration: \llbracket minexp $, \operatorname{maxexp} \llbracket=\llbracket-1008,-1000 \llbracket$.
Truncated sum $=x_{5}=+0.10101 \cdot 2^{-1000}$.
$\mathrm{e}-\mathrm{err}=(-1000)-(-2000)-4 \geqslant 7=$ prec, so that the truncated sum is accurate enough, but it is close to a breakpoint (midpoint): TMD.

To solve the TMD:

- Do not increase the precision (as usually done for the elementary functions), due to potentially huge gaps (here between x_{5} and x_{6}).
- Instead, determine the sign of the "error term" by computing this term to 1 -bit target precision, using the same method (prec $=1$).

The New mpfr_sum: An Example [6]

The input numbers used for the error term:
$x_{6}=+0.10001 \cdot 2^{-2000}$
$x_{7}=-0.10001 \cdot 2^{-2000}$
$x_{8}=-0.10000 \cdot 2^{-3000}$
$x_{9}=+0.10000 \cdot 2^{-4000}$

First iteration of the TMD resolution: full cancellation between x_{6} and x_{7}.
Second iteration of the TMD resolution: x_{8}; accurate enough \rightarrow negative.
Correctly rounded sum $=+0.1010 \cdot 2^{-1000}$.
Technical note: 2 cases to initiate the TMD resolution.

- Here, the gap between the breakpoint and the remaining bits is large enough. We start with a zeroed new accumulator.
- But a part of the error term may have already been computed in the lower part of the accumulator. In such a case, the new accumulator is initialized with some of these bits.

The New mpfr_sum: Accumulation (sum_raw)

To implement the steps presented in the example (before rounding)...
Function for accumulation: sum_raw
Computes a truncated sum in an accumulator such that if the exact sum is 0 , return 0 , otherwise satisfying e-err $\geqslant \mathrm{prec}$, where e is the exponent of the truncated sum.

Calls of sum_raw:

- Main approximation: prec $=s q+3$; zeroed accumulator in input.
- TMD resolution, if necessary: prec $=1$ (only the sign of the result is needed); the accumulator may be zeroed or initialized with some of the lowest bits from the main approximation.

The New mpfr_sum: Accumulation (sum_raw) [2]

The accumulator, for the first iteration:

- cq $=\left\lceil\log _{2}\left(N_{\text {regular }}\right)\right\rceil+1$ bits for the sign bit and to avoid overflows.
- sq bits: output precision.
- dq $\geqslant\left\lceil\log _{2}\left(N_{\text {regular }}\right)\right\rceil+2$ bits to take into account truncation errors.

Example of first iteration and after a partial cancellation (\rightarrow shift):

maxexp2: maximum exponent of the tails (MPFR_EXP_MIN if no tails).

The New mpfr_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand S, a trailing term t in the accumulator such that $0 \leqslant t<1 \mathrm{ulp}$, and an error on the trailing term.
\rightarrow The error ε on S is of the form: -2^{-3} ulp $\leqslant \varepsilon<\left(1+2^{-3}\right)$ ulp.
4 correction cases, depending on ε (from t and possibly a TMD resolution), the sign of the significand, the rounding bit, and the rounding mode (24 cases):
$\operatorname{corr}=\left\{\begin{aligned}-1: & \text { equivalent to nextDown } \\ 0: & \text { no correction } \\ +1: & \text { equivalent to nextUp } \\ +2: & \text { equivalent to } 2 \text { consecutive nextUp }\end{aligned}\right.$
This is done efficiently with:

- For sq $\geqslant 2$, one-pass operation on the two's complement significand:
- For positive results: $x+$ corr.
- For negative results: $\bar{x}+(1-$ corr $)$.

In case of change of binade, just set the MSB to 1 and correct the exponent.

- For $s q=1$, specific code (but trivial).

Tests

Tests needed to detect various possible issues:

- unnoticed error in the pen-and-paper proof (complex due to many cases);
- coding error, such as typos (without a full formal proof of MPFR);
- bug in MPFR, such as internal utility macros (this did happen: r9295);
- bug in compilers;
and to check that some bounds in the pen-and-paper proof are optimal.

Different kinds of tests, including:

- Special values (e.g., with combinations of NaN , infinities and zeroes).
- Specific tests to trigger particular cases in the implementation. Comparison with the sum computed exactly with mpfr_add then rounded.
- Generic random tests with cancellations (no full check, though).
- Tests with underflows and overflows.
- Check for value coverage in the TMD cases to make sure that the various combinations have occurred in the tests (this could be improved).

Timings

Comparison of 3 algorithms:

- sum_old: mpfr_sum from MPFR 3.1.4 (old algo).
- sum_new: mpfr_sum from the trunk patched for MPFR 3.1.4 (new algo).
- sum_add: basic sum implementation with mpfr_add (inaccurate and sensitive to the order of the inputs).

Random inputs with various sets of parameters:

- array size $\mathrm{n}=10^{1}, 10^{3}$ or 10^{5};
- small or large input precision precx (the same one);
- small or large output precision precy;
- inputs uniformly distributed in $[-1,1]$, or with scaling by a uniform distribution of the exponents in $\llbracket 0,10^{8} \llbracket$;
- partial cancellation or not.

Timings [2]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much larger factors (theoretically unbounded).

Conclusion:

- sum_new vs sum_add:
- sometimes slower, due to the accuracy requirements;
- sometimes faster, as low level and low significant bits may be ignored.
- sum_new vs sum_old:
- much faster in most cases;
- much slower in some pathological cases: precy << precx and there is a cancellation, due to the fact that the reiterations are always done in a low precision (assuming that a reiteration would stop with a large probability). Change in the future?

Sources and results are provided in the MPFR repository:
https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/

Conclusion and Future Work

Major improvements over the old algorithm and implementation:

- Much faster in most tested cases (application dependent, though).
- Much less memory in some cases (no more crashes in simple cases).
- Fully specified, with ternary value (as usual).

Temporary memory: twice the output precision + a few limbs.
For the next MPFR release: GNU MPFR 4.0.
Possible future work:

- Determine a worst-case time complexity (could be pessimistic).
- Bad cases could be improved, but this could slow down the average case.
- What is the average case? Too much context dependent. \rightarrow Based on real-world applications?

