Correctly Rounded Arbitrary-Precision Floating-Point Summation

Vincent LEFÈVRE

AriC, Inria Grenoble – Rhône-Alpes / LIP, ENS-Lyon

RAIM 2016, Banyuls-sur-Mer, 2016-06-28
Introduction to GNU MPFR

Goal: complete rewrite of the mpfr_sum function for the future GNU MPFR 4.

GNU MPFR in a few words:
- An efficient *multiple-precision floating-point* library with *correct rounding* (and signed zeros, infinities, NaN, and exceptions, but no subnormals).
- Radix 2. Each number has its own precision ≥ 1 (or 2 before MPFR 4).
- 5 rounding modes: nearest-even; toward $-\infty$, $+\infty$, 0; away from zero. The functions return the sign of the error: *ternary value*.

About the GNU MPFR internals:
- Based on GNU MP, mainly the low-level *mpn* layer. A multiple-precision natural number: array of 32-bit or 64-bit integers, called *limbs*.
- Representation of a floating-point number with 3 fields: sign, significand (array of limbs, with value in $[1/2, 1]$), exponent in $[1 - 2^{62}, 2^{62} - 1]$. Special data represented with special values in the exponent field.

mpfr_sum: *correctly rounded sum* of N numbers ($N \geq 0$).
The Old mpfr_sum Implementation

Demmel and Hida’s accurate summation algorithm + Ziv loop.

MPFR 3.1.3 [2015-06] and earlier: mpfr_sum was buggy with different precisions. Reference here: trunk r8851 / MPFR 3.1.4 [2016-03] (latest release).

Performance issues:

- The working precision must be the same for all inputs and the output. → The maximum precision had to be chosen as the base precision (bug fix).
- The exact result may be very close to a breakpoint. Uncommon case, but...
- Large exponent range → critical issue (e.g., crashes due to lack of memory).
- High-level for MPFR (mpfr_add calls). → Prevents good optimization.

Specification (behavior) issues:

- The sign of an exact zero result is not specified.
- The ternary value is valid only when zero is returned: for some exact results, one knows that they are exact, otherwise one has no information.
The New \texttt{mpfr_sum} Algorithm and Implementation

Goals:

- As fast as possible. In particular, the exponent range should no longer matter. → Low level (\textit{mpn}), based on the representation of the numbers.
- Completely specified. Exact result 0: same sign as a succession of binary +.

Basic ideas: [r10503, 2016-06-24]

1. Handle \textbf{special inputs} (NaN, infinities, only zeros, $N_{\text{regular}} \leq 2$). Otherwise:
2. \textbf{Single memory allocation} (stack or heap): accumulator, temporary area...
3. Fixed-point \textbf{accumulation} by blocks in some window $[\text{minexp}, \text{maxexp}]$ (re-iterate with a shifted window in case of cancellation): sum_raw. Done in two's complement representation.
4. If the \textbf{Table Maker's Dilemma} (TMD) occurs, then compute the sign of the error term by using the same method (sum_raw) in a low precision.
5. \textbf{Copy/shift} the truncated result to the destination (\textit{normalized}).
6. \textbf{Convert} to sign + magnitude, with \textit{correction term} at the same time.
The New mpfr_sum: An Example

Just an example (not the common case), covering most issues (cancellations...).

Simplification for readability:
- Small blocks (may be impossible in practice: the accumulator size is a multiple of the limb size, i.e. 32 or 64).
- The numbers are ordered (in the algorithm, there are loops over all the numbers and the order does not matter).
- We will not show the accumulator, just what is computed at each step.
The New \texttt{mpfr_sum}: An Example [2]

\texttt{MPFR_RNDN} (\texttt{roundTiesToEven}), output precision $\text{sq} = 4$.

$\mathcal{N}_{\text{regular}} = 10$ input numbers, each with its own precision:

\begin{align*}
 x_0 & = +0.1011101000010 \cdot 2^0 & + 1011101000010 \\
 x_1 & = -0.10001 \cdot 2^0 & - 10001 \\
 x_2 & = -0.11000011 \cdot 2^{-2} & - 11000011 \\
 x_3 & = -0.11101 \cdot 2^{-8} & - 11101 \\
 x_4 & = -0.11010 \cdot 2^{-9} & - 11010 \\
 x_5 & = +0.10101 \cdot 2^{-1000} \\
 x_6 & = +0.10001 \cdot 2^{-2000} \\
 x_7 & = -0.10001 \cdot 2^{-2000} \\
 x_8 & = -0.10000 \cdot 2^{-3000} \\
 x_9 & = +0.10000 \cdot 2^{-4000}
\end{align*}
The New mpfr_sum: An Example [3]

First iteration: $\llbracket \text{minexp}, \text{maxexp} \rrbracket = \llbracket -8, 0 \rrbracket$ (maxexp: chosen from the maximum exponent; minexp: chosen from various parameters, see details later).

Only 3 input numbers are concerned:

\begin{align*}
\text{minexp} &= -8 \\
+ 10111010[00010] \\
- 10001 \\
- 110000[11]
\end{align*}

\begin{align*}
\ldots 000000010 \quad &\text{(If the signs were reversed: } \ldots 111111110, \ e = -7) \\
\text{e} &= -6
\end{align*}

During the same loop over all the input numbers, we compute the next maxexp: Let $T = \{ i : Q(x_i) < \text{minexp} \}$, where $Q(x)$ is the exponent of the last bit of x, be the indices of the inputs that have not been fully taken into account. Then

$$\text{maxexp}^2 = \sup_{i \in T} \min(E(x_i), \text{minexp}) = \text{minexp} = -8.$$
The New mpfr_sum: An Example [4]

We have computed an approximation to the sum and we have an error bound: \(N_{\text{regular}} \cdot 2^{\maxexp^2} \), or \(2^{\text{err}} \) with \(\text{err} = \maxexp^2 + \lceil \log_2(N_{\text{regular}}) \rceil \).

The accuracy test is of the form: \(e - \text{err} \geq \text{prec} \), where \(\text{prec} \) is (currently) \(\text{sq} + 3 = 7 \). Here, \(e - \text{err} = \left(-6\right) - \left(-8\right) - \lceil \log_2(N_{\text{regular}}) \rceil \leq 0 < \text{prec} \).

\(\rightarrow \) We need at least another iteration.

Second iteration: \([-\maxexp, \maxexp] = [-17, -8]\).

\[
\begin{array}{r}
...0010 & \leftarrow \text{previous sum (shifted in the accumulator)} \\
+ & 00010 \\
- & 11 \\
- & 11101 \\
- & 11010 \\
\hline
\end{array}
\]

\[
...0000000000000
\]

Full cancellation (here with a big gap: \(\maxexp^2 = -1000 \ll \minexp \)).

\(\rightarrow \) New iteration with \(\maxexp := \maxexp^2 \) just like in the first iteration.
The New mpfr_sum: An Example [5]

The next and last 5 input numbers:

\[x_5 = +0.10101 \cdot 2^{-1000} \]
\[x_6 = +0.10001 \cdot 2^{-2000} \]
\[x_7 = -0.10001 \cdot 2^{-2000} \]
\[x_8 = -0.10000 \cdot 2^{-3000} \]
\[x_9 = +0.10000 \cdot 2^{-4000} \]

Third iteration: \([\minexp, \maxexp] = [-1008, -1000]\).

Truncated sum = \(x_5 = +0.10101 \cdot 2^{-1000}\).

\(e - \text{err} = (-1000) - (-2000) - 4 \geq 7 = \text{prec}\), so that the truncated sum is accurate enough, but it is close to a *breakpoint* (midpoint): TMD.

To solve the TMD:

- Do *not* increase the precision (as usually done for the elementary functions), due to potentially huge gaps (here between \(x_5\) and \(x_6\)).

- Instead, determine the sign of the “error term” by computing this term to 1-bit target precision, using the same method (\(\text{prec} = 1\)).
The input numbers used for the error term:

\[x_6 = +0.10001 \cdot 2^{-2000} \]
\[x_7 = -0.10001 \cdot 2^{-2000} \]
\[x_8 = -0.10000 \cdot 2^{-3000} \]
\[x_9 = +0.10000 \cdot 2^{-4000} \]

First iteration of the TMD resolution: full cancellation between \(x_6 \) and \(x_7 \).

Second iteration of the TMD resolution: \(x_8 \); accurate enough \(\rightarrow \) negative.

Correctly rounded sum = \(+0.1010 \cdot 2^{-1000} \).

Technical note: 2 cases to initiate the TMD resolution.

- Here, the gap between the breakpoint and the remaining bits is large enough. We start with a zeroed new accumulator.
- But a part of the error term may have already been computed in the lower part of the accumulator. In such a case, the new accumulator is initialized with some of these bits.
The New mpfr_sum: Accumulation (sum_raw)

To implement the steps presented in the example (before rounding)...

Function for accumulation: sum_raw
Computes a truncated sum in an accumulator such that if the exact sum is 0, return 0, otherwise satisfying $e - \text{err} \geq \text{prec}$, where e is the exponent of the truncated sum.

Calls of sum_raw:
- Main approximation: $\text{prec} = \text{sq} + 3$; zeroed accumulator in input.
- TMD resolution, if necessary: $\text{prec} = 1$ (only the sign of the result is needed); the accumulator may be zeroed or initialized with some of the lowest bits from the main approximation.
The New mpfr_sum: Accumulation (sum_raw) [2]

The accumulator, for the first iteration:

- $c_q = \lceil \log_2 (N_{regular}) \rceil + 1$ bits for the sign bit and to avoid overflows.
- sq bits: output precision.
- $dq \geq \lceil \log_2 (N_{regular}) \rceil + 2$ bits to take into account truncation errors.

Example of first iteration and after a partial cancellation (\rightarrow shift):

\[
\begin{array}{cccc}
\text{cq} & \text{maxexp} & \text{sq + dq} & \text{minexp} \\
\end{array}
\]

Before shift: 00000000000000000000000000001----------------

<--- identical bits (0) --->

<-------- 26 zeros -------->

After shift: 001----------------00000000000000000000000000

This iteration:

\[
\begin{array}{cccc}
\text{minexp} & \text{maxexp2} \\
\end{array}
\]

Next iteration:

\[
\begin{array}{cccc}
\text{maxexp} & \text{minexp} \\
\end{array}
\]

maxexp2: maximum exponent of the tails (MPFR_EXP_MIN if no tails).
The New mpfr_sum: Correction (in short)

We now have 3 terms: the sq-bit truncated significand S, a trailing term t in the accumulator such that $0 \leq t < 1$ ulp, and an error on the trailing term.

\rightarrow The error ε on S is of the form: -2^{-3} ulp $\leq \varepsilon < (1 + 2^{-3})$ ulp.

4 correction cases, depending on ε (from t and possibly a TMD resolution), the sign of the significand, the rounding bit, and the rounding mode:

$$\text{corr} = \begin{cases}
-1 : \text{equivalent to nextDown} \\
0 : \text{no correction} \\
+1 : \text{equivalent to nextUp} \\
+2 : \text{equivalent to 2 consecutive nextUp}
\end{cases}$$

This is done efficiently with:

- For $\text{sq} \geq 2$, one-pass operation on the two’s complement significand:
 - For positive results: $x + \text{corr}$.
 - For negative results: $\overline{x} + (1 - \text{corr})$.

 In case of change of binade, just set the MSB to 1 and correct the exponent.

- For $\text{sq} = 1$, specific code (but trivial).
Tests

Tests needed to detect various possible issues:

- unnoticed error in the pen-and-paper proof (complex due to many cases);
- coding error, such as typos (without a full formal proof of MPFR);
- bug in MPFR, such as internal utility macros (this did happen: r9295);
- bug in compilers;

and to check that some bounds in the pen-and-paper proof are optimal.

Different kinds of tests, including:

- Special values (e.g., with combinations of NaN, infinities and zeroes).
- Specific tests to trigger particular cases in the implementation. Comparison with the sum computed exactly with `mpfr_add` then rounded.
- Generic random tests with cancellations (no full check, though).
- Tests with underflows and overflows.
- Check for value coverage in the TMD cases to make sure that the various combinations have occurred in the tests (this could be improved).
Timings

Comparison of 3 algorithms:

- **sum_old**: mpfr_sum from MPFR 3.1.4 (old algo).
- **sum_new**: mpfr_sum from the trunk patched for MPFR 3.1.4 (new algo).
- **sum_add**: basic sum implementation with mpfr_add (inaccurate and sensitive to the order of the inputs).

Random inputs with various sets of parameters:

- array size $n = 10^1$, 10^3 or 10^5;
- small or large input precision precx (the same one);
- small or large output precision precy;
- inputs uniformly distributed in $[-1, 1]$, or with scaling by a uniform distribution of the exponents in $[0, 10^8]$;
- partial cancellation or not.
Timings [2]

Inaccurate timings (up to a factor 3 between two calls), but we focus on much larger factors (theoretically unbounded).

Conclusion:

- **sum_new vs sum_add:**
 - sometimes slower, due to the accuracy requirements;
 - sometimes faster, as low level and low significant bits may be ignored.

- **sum_new vs sum_old:**
 - much faster in most cases;
 - much slower in some pathological cases: \(\text{precy} \ll \text{precx} \) and there is a cancellation, due to the fact that the reiterations are always done in a low precision (assuming that a reiteration would stop with a large probability).

Change in the future?

Sources and results are provided in the MPFR repository:

https://gforge.inria.fr/scm/viewvc.php/mpfr/misc/sum-timings/
Conclusion and Future Work

Major improvements over the old algorithm and implementation:
- Much faster in most tested cases (application dependent, though).
- Much less memory in some cases (no more crashes in simple cases).
- Fully specified, with ternary value (as usual).

Temporary memory: twice the output precision + a few limbs.

For the next MPFR release: GNU MPFR 4.0.

Possible future work:
- Determine a worst-case time complexity (could be pessimistic).
- Bad cases could be improved, but this could slow down the average case.
- What is the average case? Too much context dependent.
 → Based on real-world applications?