Multiplication by an Integer Constant: Lower Bounds on the Code Length

Vincent LEFÈVRE

Loria, INRIA Lorraine

RNC'5

September 3 – 5, 2003

Introduction

Problem: to generate (optimal) code with elementary operations (left shifts, i.e. multiplications by powers of 2, additions and subtractions).

Example: compute 1997x (constant n = 1997).

1. $17x \leftarrow (x \ll 4) + x$ 2. $51x \leftarrow (17x \ll 2) - 17x$ 3. $1997x \leftarrow (x \ll 11) - 51x$

Can we get a very short code that computes *nx*?

Same question as with compression methods! (i.e. compress n.)

Other similarities: my heuristic, based on common patterns in the base-2 representation of n.

Formulation of the Problem

Given: odd positive integer n (our constant). We consider a sequence of positive integers $u_0, u_1, u_2, \ldots, u_q$ such that:

- initial value: $u_0 = 1$;
- for all i > 0, $u_i = |s_i u_j + 2^{c_i} u_k|$, with

$$j < i, \quad k < i, \quad s_i \in \{-1, 0, 1\}, \quad c_i \ge 0;$$

• final value: $u_q = n$.

Same operations with $u_0 = x$: we get code (called *program* in the following) that computes the $u_i x$, and in particular, nx.

Minimal q associated with n (denoted q_n)?

Outline:

- 1. Introduction / formulation of the problem (done).
- 2. Bounds on the shift counts.
- 3. A prefix code for the nonnegative integers.
- 4. How programs are encoded.
- 5. Lower bounds on the program length.

Bounds on the Shift Counts

Two data contribute to the *size* σ of a program:

- the number *q* of elementary operations (i.e. the *length*);
- the size of the parameters, in particular the shift counts c_i .

Information theory will give us information on σ . To deduce lower bounds on q, we need bounds on c_i .

<u>Notation</u>: for any positive integer m, let \mathcal{P}_m be a subset of programs multiplying by m-bit constants; S denotes a function such that for any program $\in \mathcal{P}_m$ and any $i, c_i \leq S(m)$.

 \mathcal{P}_m : optimal programs, programs generated by some algorithm, etc.

[S(m): bound on the shift counts for any considered program (i.e. in \mathcal{P}_m) associated with *m*-bit constants.]

For $n = 2^m - 1$, the optimal program will always be in \mathcal{P}_m . Therefore, $S(m) \ge m$.

For the set of programs generated by algorithms used in practice, $c_i \leq m$, therefore S(m) = m.

Proved upper bound for optimal programs: $S(m) \le 2^{\lfloor m/2 \rfloor - 2}(m+1)$, but useless here.

For adequately chosen optimal programs, it seems that $c_i \leq m$. If this is true, then S(m) = m.

 \rightarrow Lower bound on the length of *any* program.

2.2

But for the set of **all** optimal programs, consider the following example for m = 6h + 1: $n = (1 + 2^h)(1 + 2^{2h})(1 + 2^{4h}) - 2^{7h}$.

One of the optimal programs (4 operations):

$$u_{0} = 1$$

$$u_{1} = u_{0} << h + u_{0}$$

$$u_{2} = u_{1} << 2h + u_{1}$$

$$u_{3} = u_{2} << 4h + u_{2}$$

$$u_{4} = u_{3} - u_{0} << 7h.$$

This gives: $S(m) \ge 7h = \frac{7}{6}(m-1)$.

 \rightarrow The choice of the optimal program for a constant *n* is important.

We will also consider S(m) = k.m, with k > 1.

A Prefix Code for the Nonnegative Integers

```
Linked to the unbounded search problem: there exists a code in \log \sup_2(n) + O(\log^*(n)).
```

```
Here, we are only interested in a code in \log_2(n) + o(\log_2(n)).
```

For $n \ge 4$:

- *k*: number of bits of *n* minus 1;
- *h*: number of bits of *k* minus 1;

• code word of *n*: 3 concatenated subwords *h* digits 1 and a 0

h bits of *k* without the first 1 *k* bits of *n* without the first 1.

integer	code word	integer	code word	
0	000	16	110 00 0000	
1	001	31	110001111	
2	010	32	110 01 00000	
3	011	63	110 01 11111	
4	10 0 00	64	110 10 000000	
5	10 0 01	127	110 10 111111	
6	10 0 10	128	110 11 0000000	
7	10 0 11	255	110 11 1111111	
8	10 1 000	256	1110 000 0000000	
15	10 1 111	511	1110 000 11111111	

Encoding an Elementary Operation

Elementary operation: $u_i = |s_i u_j + 2^{c_i} u_k|$. \rightarrow Encode s_i , c_i , j and k.

- *s_i*: 3 possible values (−1, 0 and 1) → 2 bits.
 4th one for the end of the program.
- Integers c_i , j and k: prefix code.
- Concatenate the 4 code words.

Size of the Encoded Program

Bounds on the integers:

- c_i bounded above by S(m) = k.m.
- *j* and *k* bounded by i 1, and without significant loss, by q 1.

 \rightarrow Upper bound on the size of the encoded program:

$$B(m,q) = q \left(2 + C(S(m)) + 2C(q-1)\right) + 2.$$

with $C(n) = \begin{cases} 3 & \text{if } n \leq 3, \\ \lfloor \log_2(n) \rfloor + 2 \lfloor \log_2(\log_2(n)) \rfloor + 1 & \text{if } n \geq 4. \end{cases}$
Asymptotically: $B(m,q) \sim q \left(\log_2(S(m)) + 2 \log_2(q)\right).$
With $S(m) = k.m$: $B(m,q) \sim q \left(\log_2(m) + 2 \log_2(q)\right).$

Lower Bounds: A Notation...

Let *f* and *g* be two positive functions on some domain.

 $f(x) \gtrsim g(x)$ if there exists a function ε such that

$$|\varepsilon(x)| = o(1)$$
 and $f(x) \ge g(x) (1 + \varepsilon(x)).$

Note: it is equivalent to say that there exists a function ε' such that

$$|\varepsilon'(x)| = o(1)$$
 and $f(x)(1 + \varepsilon'(x)) \ge g(x)$.

Lower Bounds: Worst Case

We consider the 2^{m-2} positive odd integers having exactly m bits in their binary representation, and for each integer, an associated program in \mathcal{P}_m . The 2^{m-2} programs must be different. \Rightarrow There exists a program whose size σ is $\geq m - 2$, and its length qsatisfies: $m - 2 \leq \sigma \leq B(m, q) \leq B(m, q_{\text{worst}})$.

We recall that asymptotically, with S(m) = k.m, we have:

$$B(m, q_{\text{worst}}) \sim q_{\text{worst}} \left(\log_2(m) + 2 \log_2(q_{\text{worst}}) \right).$$

We can guess that $\log_2(q_{\text{worst}}) \sim \log_2(m)$. Thus we choose to bound q_{worst} by m and write: $q_{\text{worst}} (3 \log_2(m)) \gtrsim B(m, q_{\text{worst}})$.

5.2

We recall that $q_{\text{worst}} (3 \log_2(m)) \gtrsim B(m, q_{\text{worst}}) \geq m - 2$.

As a consequence: $q_{\text{worst}} \gtrsim \frac{m}{3 \log_2(m)}$.

Note: this also proves that $\log_2(q_{\text{worst}}) \sim \log_2(m)$, thus we didn't lost anything significant when bounding q_{worst} by m.

Exact lower bound for $m \ge 4$:

$$m-4$$

 $3 \log_2(m) + 4 \lfloor \log_2(\log_2(m)) \rfloor + 2 \lfloor \log_2(\log_2(k.m)) \rfloor + \log_2(k) + 6$

(note: very optimistic for small m — e.g., < 1 for all $m \leq 37$).

Lower Bounds: Average Case

We consider the set O_m of the 2^{m-2} positive odd integers having exactly m bits in their binary representation, and for each integer, an associated program in \mathcal{P}_m .

The 2^{m-2} programs must be different:

$$\frac{1}{2^{m-2}}\sum_{i\in O_m} B(m,q_i) \ge \frac{1}{2^{m-2}}\sum_{i=1}^{2^{m-2}} \lfloor \log_2 i \rfloor = m - 4 + \frac{m}{2^{m-2}},$$

As a consequence,

$$2 + (2 + C(S(m)) + 2C(m)) \frac{1}{2^{m-2}} \sum_{i \in O_m} q_i \ge m - 4 + \frac{m}{2^{m-2}}$$

We recall that

$$2 + (2 + C(S(m)) + 2C(m)) \frac{1}{2^{m-2}} \sum_{i \in O_m} q_i \ge m - 4 + \frac{m}{2^{m-2}}.$$

Thus
$$q_{\rm av} \ge \frac{m - 6 + m/2^{m-2}}{2 + C(S(m)) + 2C(m)}.$$

Asymptotically, with S(m) = k.m, the average length q_{av} satisfies:

$$q_{\rm av} \gtrsim \frac{m}{3 \log_2(m)} \, \bigg| \, ,$$

i.e. the same bound as in the worst case.

m	$q_{\rm av}^+$	$q_{\rm av}^-$	ratio
8	2.6	0.11	24.5
16	4.4	0.34	12.8
32	7.6	0.81	9.35
64	13.4	1.66	8.09
128	23.7	3.21	7.38
256	42.2	5.32	7.93
512	75.5	10.1	7.46
1024	135	19.2	7.05
2048	243	36.5	6.67
4096	440	69.3	6.35
8192	803	132	6.08

Vincent LEFÈVRE — Multiplication by an Integer Constant: Lower Bounds on the Code Length

For random *m*-bit constants: approximated upper bounds on q_{av} (obtained with my algorithm), lower bounds on q_{av} and the ratio.