Multiplication by an Integer Constant: Lower Bounds on the Code Length

Vincent Lefèvre
Loria, INRIA Lorraine

RNC'5
September 3-5, 2003

Introduction

Problem: to generate (optimal) code with elementary operations (left shifts, i.e. multiplications by powers of 2, additions and subtractions).

Example: compute 1997x (constant $n=1997$).

$$
\left.\begin{array}{rl}
\text { 1. } & 17 x \\
\text { 2. } & \leftarrow(x \ll 4)+x \\
\text { 3. } & 1997 x
\end{array}\right) \leftarrow(17 x \ll 2)-17 x x+(x \ll 11)-51 x \text { }
$$

Can we get a very short code that computes $n \boldsymbol{x}$?
Same question as with compression methods! (i.e. compress n.)
Other similarities: my heuristic, based on common patterns in the base-2 representation of n.

Formulation of the Problem

Given: odd positive integer n (our constant). We consider a sequence of positive integers $u_{0}, u_{1}, u_{2}, \ldots, u_{q}$ such that:

- initial value: $u_{0}=1$;
- for all $i>0, u_{i}=\left|s_{i} u_{j}+2^{c_{i}} u_{k}\right|$, with

$$
j<i, \quad k<i, \quad s_{i} \in\{-1,0,1\}, \quad c_{i} \geq 0
$$

- final value: $u_{q}=n$.

Same operations with $u_{0}=x$: we get code (called program in the following) that computes the $u_{i} x$, and in particular, $n x$.

Minimal q associated with $n\left(\right.$ denoted $\left.q_{n}\right)$?

Outline:

1. Introduction / formulation of the problem (done).
2. Bounds on the shift counts.
3. A prefix code for the nonnegative integers.
4. How programs are encoded.
5. Lower bounds on the program length.

Bounds on the Shift Counts

Two data contribute to the size σ of a program:

- the number q of elementary operations (i.e. the length);
- the size of the parameters, in particular the shift counts c_{i}.

Information theory will give us information on σ. To deduce lower bounds on q, we need bounds on c_{i}.

Notation: for any positive integer m, let \mathcal{P}_{m} be a subset of programs multiplying by m-bit constants; S denotes a function such that for any program $\in \mathcal{P}_{m}$ and any $i, c_{i} \leq S(m)$.
\mathcal{P}_{m} : optimal programs, programs generated by some algorithm, etc.
[$S(m)$: bound on the shift counts for any considered program (i.e. in \mathcal{P}_{m}) associated with m-bit constants.]

For $n=2^{m}-1$, the optimal program will always be in \mathcal{P}_{m}.
Therefore, $S(\boldsymbol{m}) \geq \boldsymbol{m}$.
For the set of programs generated by algorithms used in practice, $c_{i} \leq m$, therefore $S(m)=m$.

Proved upper bound for optimal programs:
$S(m) \leq 2^{\lfloor m / 2\rfloor-2}(m+1)$, but useless here.
For adequately chosen optimal programs, it seems that $c_{i} \leq m$. If this is true, then $S(m)=m$.
\rightarrow Lower bound on the length of any program.

But for the set of all optimal programs, consider the following example for $m=6 h+1: n=\left(1+2^{h}\right)\left(1+2^{2 h}\right)\left(1+2^{4 h}\right)-2^{7 h}$.

One of the optimal programs (4 operations):

$$
\begin{aligned}
& u_{0}=1 \\
& u_{1}=u_{0} \ll h \quad+u_{0} \\
& u_{2}=u_{1} \ll 2 h+u_{1} \\
& u_{3}=u_{2} \ll 4 h+u_{2} \\
& u_{4}=u_{3} \quad-u_{0} \ll 7 h .
\end{aligned}
$$

This gives: $S(m) \geq 7 h=\frac{7}{6}(m-1)$.
\rightarrow The choice of the optimal program for a constant n is important.

We will also consider $S(m)=k . m$, with $k>1$.

A Prefix Code for the Nonnegative Integers

Linked to the unbounded search problem: there exists a code in $\operatorname{logsum}_{2}(n)+O\left(\log ^{*}(n)\right)$.

Here, we are only interested in a code in $\log _{2}(n)+o\left(\log _{2}(n)\right)$.
For $n \geq 4$:

- k : number of bits of n minus 1 ;
- h : number of bits of k minus 1 ;
- code word of $n: 3$ concatenated subwords h digits 1 and a 0
h bits of k without the first $1 \quad k$ bits of n without the first 1.

integer	code word		
0	000		
1	001		
2	010		
3	011		
4	10	0	00
5	10	0	01
6	10	0	10
7	10	0	11
8	10	1	000
15	10	1	111

integer	code word			
16	110		00	0000
31	110	00	1111	
32	110	01	00000	
63	110	01	11111	
64	110	10	000000	
127	110	10	111111	
128	110	11	0000000	
255	110	11	1111111	
256	1110	000	00000000	
511	1110	000	11111111	

Encoding an Elementary Operation

Elementary operation: $u_{i}=\left|s_{i} u_{j}+2^{c_{i}} u_{k}\right|$.
\rightarrow Encode s_{i}, c_{i}, j and k.

- $s_{i}: 3$ possible values ($-1,0$ and 1) $\rightarrow 2$ bits.

4th one for the end of the program.

- Integers c_{i}, j and k : prefix code.
- Concatenate the 4 code words.

Size of the Encoded Program

Bounds on the integers:

- c_{i} bounded above by $S(m)=k . m$.
- j and k bounded by $i-1$, and without significant loss, by $q-1$.
\rightarrow Upper bound on the size of the encoded program:

$$
B(m, q)=q(2+C(S(m))+2 C(q-1))+2
$$

with $C(n)= \begin{cases}3 & \text { if } n \leq 3, \\ \left\lfloor\log _{2}(n)\right\rfloor+2\left\lfloor\log _{2}\left(\log _{2}(n)\right)\right\rfloor+1 & \text { if } n \geq 4 .\end{cases}$
Asymptotically: $B(m, q) \sim q\left(\log _{2}(S(m))+2 \log _{2}(q)\right)$.
With $S(m)=k \cdot m: B(m, q) \sim q\left(\log _{2}(m)+2 \log _{2}(q)\right)$.

Lower Bounds: A Notation...

Let f and g be two positive functions on some domain.
$f(x) \gtrsim g(x)$ if there exists a function ε such that

$$
|\varepsilon(x)|=o(1) \quad \text { and } \quad f(x) \geq g(x)(1+\varepsilon(x))
$$

Note: it is equivalent to say that there exists a function ε^{\prime} such that

$$
\left|\varepsilon^{\prime}(x)\right|=o(1) \quad \text { and } \quad f(x)\left(1+\varepsilon^{\prime}(x)\right) \geq g(x)
$$

Lower Bounds: Worst Case

We consider the 2^{m-2} positive odd integers having exactly m bits in their binary representation, and for each integer, an associated program in \mathcal{P}_{m}. The 2^{m-2} programs must be different.
\Rightarrow There exists a program whose size σ is $\geq m-2$, and its length q satisfies: $m-2 \leq \sigma \leq B(m, q) \leq B\left(m, q_{\text {worst }}\right)$.

We recall that asymptotically, with $S(m)=k . m$, we have:

$$
B\left(m, q_{\text {worst }}\right) \sim q_{\text {worst }}\left(\log _{2}(m)+2 \log _{2}\left(q_{\text {worst }}\right)\right) .
$$

We can guess that $\log _{2}\left(q_{\text {worst }}\right) \sim \log _{2}(m)$. Thus we choose to bound $q_{\text {worst }}$ by m and write: $q_{\text {worst }}\left(3 \log _{2}(m)\right) \gtrsim B\left(m, q_{\text {worst }}\right)$.

We recall that $q_{\text {worst }}\left(3 \log _{2}(m)\right) \gtrsim B\left(m, q_{\text {worst }}\right) \geq m-2$.
As a consequence: $q_{\text {worst }} \gtrsim \frac{m}{3 \log _{2}(m)}$.
Note: this also proves that $\log _{2}\left(q_{\text {worst }}\right) \sim \log _{2}(m)$, thus we didn't lost anything significant when bounding $q_{\text {worst }}$ by m.

Exact lower bound for $m \geq 4$:

$$
\frac{m-4}{3 \log _{2}(m)+4\left\lfloor\log _{2}\left(\log _{2}(m)\right)\right\rfloor+2\left\lfloor\log _{2}\left(\log _{2}(k . m)\right)\right\rfloor+\log _{2}(k)+6}
$$

(note: very optimistic for small $m-$ e.g., <1 for all $m \leq 37$).

Lower Bounds: Average Case

We consider the set O_{m} of the 2^{m-2} positive odd integers having exactly m bits in their binary representation, and for each integer, an associated program in \mathcal{P}_{m}.

The 2^{m-2} programs must be different:

$$
\frac{1}{2^{m-2}} \sum_{i \in O_{m}} B\left(m, q_{i}\right) \geq \frac{1}{2^{m-2}} \sum_{i=1}^{2^{m-2}}\left\lfloor\log _{2} i\right\rfloor=m-4+\frac{m}{2^{m-2}}
$$

As a consequence,

$$
2+(2+C(S(m))+2 C(m)) \frac{1}{2^{m-2}} \sum_{i \in O_{m}} q_{i} \geq m-4+\frac{m}{2^{m-2}}
$$

We recall that

$$
2+(2+C(S(m))+2 C(m)) \frac{1}{2^{m-2}} \sum_{i \in O_{m}} q_{i} \geq m-4+\frac{m}{2^{m-2}}
$$

Thus $q_{\mathrm{av}} \geq \frac{m-6+m / 2^{m-2}}{2+C(S(m))+2 C(m)}$.

Asymptotically, with $S(m)=k . m$, the average length $q_{\text {av }}$ satisfies:

$$
q_{\mathrm{av}} \gtrsim \frac{m}{3 \log _{2}(m)}
$$

i.e. the same bound as in the worst case.

m	q_{av}^{+}	q_{av}^{-}	ratio
8	2.6	0.11	24.5
16	4.4	0.34	12.8
32	7.6	0.81	9.35
64	13.4	1.66	8.09
128	23.7	3.21	7.38
256	42.2	5.32	7.93
512	75.5	10.1	7.46
1024	135	19.2	7.05
2048	243	36.5	6.67
4096	440	69.3	6.35
8192	803	132	6.08

For random m-bit constants: approximated upper bounds on $q_{\text {av }}$ (obtained with my algorithm), lower bounds on q_{av} and the ratio.

