
Correct Rounding of Mathematical Functions

Vincent LEFÈVRE

Arénaire, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon

SIESTE, 2010-03-23

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Outline

Introduction: Floating-Point Arithmetic

Relation with Programming Languages

Solving the Table Maker’s Dilemma: Introduction

Solving the Table Maker’s Dilemma: L-Algorithm

Solving the Table Maker’s Dilemma: SLZ Algorithm

Solving the Table Maker’s Dilemma: Periodical Functions with Large Arguments

Results

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 2 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Floating-Point Formats

Floating-point representation in radix β (e.g., 2), precision p:

x = s ·m · βe (machine number)

where
s = ±1 is the sign,
m = x0.x1x2 . . . xp−1 (with 0 ≤ xi ≤ β − 1) is the significand,
the integer e is the exponent (emin ≤ e ≤ emax).

Normalization: if e > emin, one can require x0 6= 0 (x0 = 1 if β = 2).
Special numbers: ±0, ±∞, NaN.

IEEE 754 basic formats: binary32, binary64, binary128, decimal64, decimal128;
binary64 is the most used (most precise supported in hardware in practice),
available via the C type double (in practice), ECMAScript, XPath, Perl’s
floating-point type (most often). . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 3 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Rounding Direction Attributes (IEEE 754)

The exact result of floating-point function (operation +, −, ×, ÷, square root,
radix conversion, etc.) is not always a machine number; in general, it must be
rounded.

Rounding direction attributes (rounding modes):
Rounding to nearest: y = ◦(x) is the machine number closest to x .
If x is halfway between two consecutive machine numbers:

I roundTiesToEven: the one whose least significant digit yp−1 is even.
I roundTiesToAway (new in 2008): the one whose magnitude is larger.

Directed rounding: ◦(x) is the machine number closest to x such that:
I roundTowardNegative (toward −∞): ◦(x) ≤ x ;
I roundTowardPositive (toward +∞): ◦(x) ≥ x ;
I roundTowardZero: |◦(x)| ≤ |x |, equivalent to

F roundTowardNegative if x ≥ 0,
F roundTowardPositive if x ≤ 0.

Default rounding direction attribute (if dynamic) for binary: roundTiesToEven.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 4 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Correct Rounding

The IEEE 754 standard requires the correct rounding of various operations.
In the 2008 version:

Except where stated otherwise, every operation shall be performed as if
it first produced an intermediate result correct to infinite precision and
with unbounded range, and then rounded that result according to one of
the attributes in this clause.

Supported operations:
Already in the 1985 version (well-supported):

I +, −, ×, ÷, square root;
I binary-decimal conversions up to some limits.

New in the 2008 version (partial support):
I fused multiply-add (FMA): fma(x , y , z) = xy + z;
I binary-decimal conversions up to some higher limits (possibly unbounded);
I some elementary functions recommended.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 5 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Rounding the Elementary Functions
Elementary functions: correct rounding is difficult, at least to guarantee a correct
and/or efficient implementation.

We want to evaluate and round y = f (x), i.e. to return ◦(y).
We know how to compute an approximation y ′ to y with error bound ε.
We know how to round y ′, but do we have ◦(y ′) = ◦(y)?

Problem known as the Table Maker’s Dilemma (TMD).

Example in rounding to nearest:

x

I

k

k

x

I

k

k

+

+

1

1

x

I

k

k

+

+

2

2

x

I

k

k

+

+

3

3
y’

computed value

exact value y ? rounded to xk+1 or xk+2 ?

machine numbers

Minimum ε for which the TMD can occur? Worst case(s)?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 6 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Ziv’s Strategy

m = ?

m = n+20

m = n+40

m = 2n

failure

success

rounded

result

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 7 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Implementations of Elementary Functions

Implementations of the standard math library in the past few years and today do
not provide correct rounding in general.

From tests done several years ago in round-to-nearest on worst cases for
elementary functions:

exp, log, exp2, log2, exp10, log10,
sinh, asinh, cosh, acosh,
sin, asin, cos, acos, tan, atan,
1/x2, 1/

√
x , x3, 3

√
x ,

platforms giving 36 different behaviors, including 8 GNU/Linux machines with
some apparently correctly-rounded functions, thanks to MathLib. . .
More details on http://www.vinc17.net/research/testlibm/

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 8 / 51

http://www.vinc17.net/research/testlibm/

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Implementations of Elementary Functions [2]

Various implementations of correctly rounded functions:

Ziv/IBM’s libultim/MathLib (2002).
Not proved (by Ziv/IBM) and only rounding to nearest.
Requires the dynamic rounding mode to be round-to-nearest, otherwise
results can be completely wrong, with possible crash (glibc bug 3976).
Included in GNU libc (but not used on all platforms).
Sun’s libmcr (2004). Not proved.
CRlibm (Arénaire), started in 2004.
Proved and optimized, thanks to the worst cases I obtained!
Lead to the recommendation in IEEE 754-2008.
GNU MPFR (mainly INRIA), started in 1999. In arbitrary precision.

Note: my results provide a proof for the method used by Ziv’s library, but contrary
to CRlibm, whose code is based on them, Ziv’s library can be inefficient in some
(rare) cases: internal precision of 768 bits, while about 120 would be sufficient.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 9 / 51

http://sourceware.org/bugzilla/show_bug.cgi?id=3976

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Relation with Programming Languages

The IEEE 754 standard specifies floating-point arithmetic (though not completely,
e.g., correct rounding of elementary functions is only a recommendation), but
what about programming languages? Possible specification via bindings.

ECMAScript and XPath: IEEE 754 double precision, round-to-nearest only.
FORTRAN: no support (forbidden expression transformations).
Java: needs the strictfp modifier.
ISO C99: optional (Annex F, pragmas).

In practice, difficult:
Possible bugs due to optimizations. For instance, pow(x,0.5) must not be
replaced by sqrt(x) unconditionally: on −0, the results are +0 and −0
respectively. 2010-03-18: GCC PR 43419 (4.3.* and 4.4.3).
Possible inconsistency between the compiler and the math library.

Elementary functions: math library, but. . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 10 / 51

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43419

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 1st Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test1 (void)
{

double x = D;
double x2, y;

x2 = x;
y = sin (x2);
return y;

}

compiled with: -O2 -DD=2.522464e-1

Result: 0.24957989804940911016 (correct)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 11 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 1st Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test1 (void)
{

double x = D;
double x2, y;

x2 = x;
y = sin (x2);
return y;

}

compiled with: -O2 -DD=2.522464e-1

Result: 0.24957989804940911016 (correct)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 11 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 2nd Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test2 (void)
{

volatile double x = D;
double x2, y;

x2 = x;
y = sin (x2);
return y;

}

compiled with: -O2 -DD=2.522464e-1 (like test1)

Result: 0.24957989804940913792
test1: 0.24957989804940911016

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 12 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 2nd Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test2 (void)
{

volatile double x = D;
double x2, y;

x2 = x;
y = sin (x2);
return y;

}

compiled with: -O2 -DD=2.522464e-1 (like test1)

Result: 0.24957989804940913792

test1: 0.24957989804940911016

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 12 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 2nd Test

For all tests: GCC 4.4.3 and glibc 2.10.2 under Linux/x86_64 (Debian/sid).

double test2 (void)
{

volatile double x = D;
double x2, y;

x2 = x;
y = sin (x2);
return y;

}

compiled with: -O2 -DD=2.522464e-1 (like test1)

Result: 0.24957989804940913792
test1: 0.24957989804940911016

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 12 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: A More Difficult Case

Both tests compiled with: -O2 -DD=1e22

Difficulty: 1022 is much larger than 2π, and the range reduction must be carried
out with enough precision to provide an accurate result.

Results:
test1: −0.85220084976718879499
test2: −0.85220084976718879499

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 13 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: A More Difficult Case

Both tests compiled with: -O2 -DD=1e22

Difficulty: 1022 is much larger than 2π, and the range reduction must be carried
out with enough precision to provide an accurate result.

Results:
test1: −0.85220084976718879499
test2: −0.85220084976718879499

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 13 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: A More Difficult Case

Both tests compiled with: -O2 -DD=1e22

Difficulty: 1022 is much larger than 2π, and the range reduction must be carried
out with enough precision to provide an accurate result.

Results:
test1: −0.85220084976718879499

test2: −0.85220084976718879499

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 13 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: A More Difficult Case

Both tests compiled with: -O2 -DD=1e22

Difficulty: 1022 is much larger than 2π, and the range reduction must be carried
out with enough precision to provide an accurate result.

Results:
test1: −0.85220084976718879499
test2: −0.85220084976718879499

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 13 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 3rd Test

double test3 (void)
{

volatile double x = D, z;
double x2, y;

x2 = x;
y = sin (x2);
z = cos (x2);
return y;

}

compiled with: -O2 -DD=1e22

Results:
test1: −0.85220084976718879499
test2: −0.85220084976718879499

test3: 0.46261304076460174617

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 14 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: 3rd Test

double test3 (void)
{

volatile double x = D, z;
double x2, y;

x2 = x;
y = sin (x2);
z = cos (x2);
return y;

}

compiled with: -O2 -DD=1e22

Results:
test1: −0.85220084976718879499
test2: −0.85220084976718879499
test3: 0.46261304076460174617

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 14 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: The Explanations

test1: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM’s MathLib, which provides correct rounding.
But there is a bug for 0.25 < |x | < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

test3: The optimization is still not possible, but GCC notices that both
sin() and cos() are called on the same value x2 (not volatile), and calls
the sincos() function, assuming the glibc math library will be used (indeed,
sincos() is a GNU extension). This function, not provided by MathLib, is
implemented by the fsincos x87 instruction.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 15 / 51

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: The Explanations

test1: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM’s MathLib, which provides correct rounding.

But there is a bug for 0.25 < |x | < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

test3: The optimization is still not possible, but GCC notices that both
sin() and cos() are called on the same value x2 (not volatile), and calls
the sincos() function, assuming the glibc math library will be used (indeed,
sincos() is a GNU extension). This function, not provided by MathLib, is
implemented by the fsincos x87 instruction.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 15 / 51

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: The Explanations

test1: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM’s MathLib, which provides correct rounding.
But there is a bug for 0.25 < |x | < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

test3: The optimization is still not possible, but GCC notices that both
sin() and cos() are called on the same value x2 (not volatile), and calls
the sincos() function, assuming the glibc math library will be used (indeed,
sincos() is a GNU extension). This function, not provided by MathLib, is
implemented by the fsincos x87 instruction.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 15 / 51

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Evaluating a Sine: The Explanations

test1: The variable x has a constant value (and known at compile time), so
does x2, and GCC can evaluate the expression sin(x2). As of version 4.3.0,
GCC uses MPFR, which provides correct rounding.

test2: Due to the volatile qualifier, GCC does not perform the above
optimization (assuming possible side effects). The sin() function is called.
At run time, this function is provided by the glibc math library, based (in
64-bit mode) on IBM’s MathLib, which provides correct rounding.
But there is a bug for 0.25 < |x | < 0.855469, due to incorrect error analysis
(found by Paul Zimmermann, glibc bug 10709).

test3: The optimization is still not possible, but GCC notices that both
sin() and cos() are called on the same value x2 (not volatile), and calls
the sincos() function, assuming the glibc math library will be used (indeed,
sincos() is a GNU extension). This function, not provided by MathLib, is
implemented by the fsincos x87 instruction.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 15 / 51

http://sourceware.org/bugzilla/show_bug.cgi?id=10709

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

How About Arithmetic Operations?

#include <stdio.h>
#include <math.h>

#ifdef FP_CONTRACT
#undef FP_CONTRACT
#define FP_CONTRACT "ON"
#pragma STDC FP_CONTRACT ON
#else
#define FP_CONTRACT "OFF"
#pragma STDC FP_CONTRACT OFF
#endif

static double fct (double a, double b)
{ return a >= b ? sqrt (a * a - b * b) : 0; }

void test (volatile double x)
{ printf ("test(%.20g) = %.20g\n", x, fct (x, x + 0.0)); }

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 16 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Test with:
1 GCC 4.0.1 (Apple) on PowerPC
2 GCC 4.3.2 on x86_64
3 GCC 4.1.2 on ia64
4 ICC 10.1 on ia64 with FP_CONTRACT OFF
5 ICC 10.1 on ia64 with FP_CONTRACT ON

Note: GCC does not support the FP_CONTRACT pragma and assumes it is “on”
(this is a bug). And actually, the GCC version doesn’t matter in these tests.

Input x 2 and 4 1 , 3 , and 5

1.0 0 0
1.1 0 2.9802322387695326562e-09
1.2 0 nan

Explanation: a * a - b * b replaced by fma(a, a, - (b * b))
i.e. ◦(◦(a2)− ◦(b2)) replaced by ◦(a2 − ◦(b2))

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 17 / 51

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37845

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Test with:
1 GCC 4.0.1 (Apple) on PowerPC
2 GCC 4.3.2 on x86_64
3 GCC 4.1.2 on ia64
4 ICC 10.1 on ia64 with FP_CONTRACT OFF
5 ICC 10.1 on ia64 with FP_CONTRACT ON

Note: GCC does not support the FP_CONTRACT pragma and assumes it is “on”
(this is a bug). And actually, the GCC version doesn’t matter in these tests.

Input x 2 and 4 1 , 3 , and 5

1.0 0 0
1.1 0 2.9802322387695326562e-09
1.2 0 nan

Explanation: a * a - b * b replaced by fma(a, a, - (b * b))
i.e. ◦(◦(a2)− ◦(b2)) replaced by ◦(a2 − ◦(b2))

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 17 / 51

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=37845

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Solving the Table Maker’s Dilemma: Introduction

Function f , machine number x , rounding f (x)?
In arbitrary precision (GNU MPFR).
In fixed, small precision: search for the worst cases.

Breakpoint numbers: discontinuity points of the rounding functions.
Directed rounding: the machine numbers.
Round-to-nearest: the midpoint numbers.

A first problem: the exact cases, i.e., when f (x) is a breakpoint.
Lindemann, 1882: the exponential of an algebraic complex number 6= 0 is not
algebraic.
Machine and midpoint numbers are algebraic.

→ For the elementary functions exp, log, exp2, log2, exp10, log10, sinh, asinh,
cosh, acosh, sin, asin, cos, acos, tan, atan, very few exact cases, which are known.
For pow, more difficult. For some special functions, open problem.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 18 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

The Form of Bad Cases in Radix 2

We will focus on radix 2. Problems are similar in radix 10.

If n denotes the precision:

in directed rounding:

m bits︷ ︸︸ ︷
1.xx . . . xx︸ ︷︷ ︸

n bits

0000 . . . 00 xx . . . or
m bits︷ ︸︸ ︷

1.xx . . . xx︸ ︷︷ ︸
n bits

1111 . . . 11 xx . . .

in round-to-nearest:
m bits︷ ︸︸ ︷

1.xx . . . xx︸ ︷︷ ︸
n bits

1000 . . . 00 xx . . . or
m bits︷ ︸︸ ︷

1.xx . . . xx︸ ︷︷ ︸
n bits

0111 . . . 11 xx . . .

In red: rounding bit.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 19 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Estimating the Minimum Distance d

Minimum distance d between f (x) and a breakpoint number?
Equivalent problem in radix 2 (up to a factor 2): maximum number of identical
bits after the rounding bit of f (x)? Or the corresponding value of m?

Lindemann’s theorem: theoretical, no bounds.
Best theorem giving such bounds: Nesterenko and Waldschmidt (1995), for
exp, log, and related functions (trigonometric and hyperbolic). Up to several
millions or billions of bits for binary64.
Probabilistic model: when x is a machine number, f (x) mod ulp(x) is
regarded as a random number with uniform distribution.
→ For N inputs, d should be of the order of ulp(x)/N and the number of
identical bits of the order log2(N).
→ For one exponent, N = 2n−1, so that m ∼ 2n.
→ For all the inputs, m ∼ 2n + small constant (for most formats).
The estimated constant depends on f (e.g., for exp, limited number of
exponents: exp(x) ' 1 for |x | small, underflow/overflow for |x | large).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 20 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Estimating the Minimum Distance d

Minimum distance d between f (x) and a breakpoint number?
Equivalent problem in radix 2 (up to a factor 2): maximum number of identical
bits after the rounding bit of f (x)? Or the corresponding value of m?

Lindemann’s theorem: theoretical, no bounds.

Best theorem giving such bounds: Nesterenko and Waldschmidt (1995), for
exp, log, and related functions (trigonometric and hyperbolic). Up to several
millions or billions of bits for binary64.
Probabilistic model: when x is a machine number, f (x) mod ulp(x) is
regarded as a random number with uniform distribution.
→ For N inputs, d should be of the order of ulp(x)/N and the number of
identical bits of the order log2(N).
→ For one exponent, N = 2n−1, so that m ∼ 2n.
→ For all the inputs, m ∼ 2n + small constant (for most formats).
The estimated constant depends on f (e.g., for exp, limited number of
exponents: exp(x) ' 1 for |x | small, underflow/overflow for |x | large).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 20 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Estimating the Minimum Distance d

Minimum distance d between f (x) and a breakpoint number?
Equivalent problem in radix 2 (up to a factor 2): maximum number of identical
bits after the rounding bit of f (x)? Or the corresponding value of m?

Lindemann’s theorem: theoretical, no bounds.
Best theorem giving such bounds: Nesterenko and Waldschmidt (1995), for
exp, log, and related functions (trigonometric and hyperbolic). Up to several
millions or billions of bits for binary64.

Probabilistic model: when x is a machine number, f (x) mod ulp(x) is
regarded as a random number with uniform distribution.
→ For N inputs, d should be of the order of ulp(x)/N and the number of
identical bits of the order log2(N).
→ For one exponent, N = 2n−1, so that m ∼ 2n.
→ For all the inputs, m ∼ 2n + small constant (for most formats).
The estimated constant depends on f (e.g., for exp, limited number of
exponents: exp(x) ' 1 for |x | small, underflow/overflow for |x | large).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 20 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Estimating the Minimum Distance d

Minimum distance d between f (x) and a breakpoint number?
Equivalent problem in radix 2 (up to a factor 2): maximum number of identical
bits after the rounding bit of f (x)? Or the corresponding value of m?

Lindemann’s theorem: theoretical, no bounds.
Best theorem giving such bounds: Nesterenko and Waldschmidt (1995), for
exp, log, and related functions (trigonometric and hyperbolic). Up to several
millions or billions of bits for binary64.
Probabilistic model: when x is a machine number, f (x) mod ulp(x) is
regarded as a random number with uniform distribution.
→ For N inputs, d should be of the order of ulp(x)/N and the number of
identical bits of the order log2(N).
→ For one exponent, N = 2n−1, so that m ∼ 2n.
→ For all the inputs, m ∼ 2n + small constant (for most formats).
The estimated constant depends on f (e.g., for exp, limited number of
exponents: exp(x) ' 1 for |x | small, underflow/overflow for |x | large).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 20 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Correct Rounding of Math Functions in GNU MPFR

Ziv’s strategy in MPFR:
first evaluate the result with
slightly more precision (m)
than the target (p);
if rounding is not possible,
then m← m + (32 or 64),
and recompute;
for the following failures:
m← m + bm/2c.

m = ?

m = p+k

m += 64

m += m/2

failure

success

rounded

result

Detection of the exact cases for the elementary functions.
Open problem for the special functions, but an infinite loop is very unlikely.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 21 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Solving the TMD in Fixed, Small Precision

Minimum distance d between f (x) and a breakpoint number?
→ Exhaustive search for the worst cases.

Single precision (< 232 possible arguments): for each argument x , compute
f (x) in higher precision and check.

Double precision (up to ' 264 possible arguments): several hundreds or
thousands of years per function would be needed with the same method!
→ Specific algorithms designed for these tests.

Intel’s extended precision (up to ' 280 possible arguments): still possible,
with more time.

Quadruple precision (up to ' 2128 possible arguments): out of reach (too
much time would be needed).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 22 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Search for Worst Cases: History

1993: first work by M. Schulte and E. E. Swartzlander in single precision.
Work in double precision (binary64) started in 1996 (DEA training period at
LIP). First tests on function exp between 1/2 and 1 using finite differences on
degree-2 polynomials (several months on ∼ 100 machines).
October 1996 (beginning of my PhD thesis, with J.-M. Muller): first ideas
towards my algorithm that computes a lower bound on the distance between
a segment and Z2 (published in June 1997).
1998: variant of my algorithm (implemented in 2004).
October 2002: SLZ algorithm (D. Stehlé – V. Lefèvre – P. Zimmermann),
based on lattice reduction (LLL) and Coppersmith’s work.
June 2006: first ideas for the very difficult case of periodical functions
sin/cos/tan on large arguments. Work published in January 2007 with
G. Hanrot, D. Stehlé and P. Zimmermann.
May 2009: heuristic bug detections.

Note: 1996-2000 at LIP (Arénaire), 2000-2006 at LORIA (SPACES), 2006-? at LIP (Arénaire).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 23 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Search for Worst Cases: the Problem

Goal: find all the breakpoint numbers x such that f (x) is very close to a
breakpoint number.

Worst cases for f and the inverse function f −1.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 24 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Computing the Successive Values of a Polynomial
Example: P(X) = X 3. Difference table:

0 1 8 27 64 125 216

1 7 19 37 61 91

6 12 18 24 30

6 6 6 6

0 0 0

On the left: coefficients in the basis
{
1,X , X (X − 1)

2 ,
X (X − 1)(X − 2)

3! , . . .

}
.

Can be done modulo some constant (very useful here).

Can be used to solve the TMD once we have approximated f by a polynomial
(valid on a small interval), but also for. . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 25 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Hierarchical Approximations by Polynomials
Current implementation (but one could have more than 3 levels):

deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2 deg 2

polynomial of degree d (large)

function f on an interval I

[approximation computed with Maple + IntpakX]

deg 1 deg 1 deg 1 deg 1 deg 1 deg 1 deg 1

polynomial of degree 2

Finding approximations must be very fast: from the previous one, based on
regularly-spaced intervals. 2 methods:

Take into account the computations that haven’t been done (add → mul).
Use the fact that each (initial) degree-i coefficient of Pk on the interval Jk
can be seen as the value of a polynomial ai(k).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 26 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Implementation

For a given function f , sign +/− and exponent, the binade is split into intervals I
(typically, 213 intervals of size 240, with 54-bit significands to obtain results for the
inverse function).

A set of Perl scripts:
First step: generate, compile and run code to test an interval I and return
potential worst cases. Parameters chosen to obtain around 256 potential
worst cases (under the probabilistic hypotheses).
Second step: check the results of the first step with a naive computation.
Heuristic bug detections.

I The number of results must not be too low (e.g. not < 150).
I Each result must be close enough to a breakpoint (either real or additional,

when the exponent of f (x) is variable on the interval).
If OK, results stored on disk.
Script to read the results, filter them, and so on. Uses MPFR.
Client-server system for the first step (slowest part, thus parallelized).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 27 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

L-Algorithm: the Problem With a Degree-1 Polynomial
In each interval:

f is approximated by a polynomial of degree 1 → segment y = b − ax .
Multiplication of the coordinates by powers of 2 → grid = Z2.

One searches for the values n such that {b − n.a} < d0, where a, b and d0 are
real numbers and n ∈ J0,N − 1K.

{x} denotes the positive fractional part of x .

0

1

2

3

4

5
0

1

2

3

4

5

0

1

2

3

4

5

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 28 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

L-Algorithm: the Problem With a Degree-1 Polynomial [2]

We chose a positive fractional part instead of centered.
→ An upward shift is taken into account in b and d0.

If a is rational, then the sequence 0.a, 1.a, 2.a, 3.a, . . . (modulo 1) is
periodical.
→ This makes the theoretical analysis more difficult.
→ In the proof, one assumes that a is irrational, or equivalently, that
a is a rational number + an arbitrary small irrational number.

But in the implementation, a is rational.
→ Extension to rational numbers by continuity.
→ Care has to be taken with the inequality tests since

I they are not continuous functions;
I problems can occur when the period has been reached: endless loops. . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 29 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

The Three-Distance Theorem

Note: related to the three-distance theorem.

α

x
0

x
1

x
2

x
3

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

x
10

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 30 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Notations / Properties of k .a mod 1 (0 ≤ k < n)

Properties of the two-length configurations Cn = {k.a ∈ R/Z : k ∈ N, k < n},
to be proved by induction:

Intervals x0, x1, . . . , xu−1 of length x , where x0 is the left-most interval
and xr = x0 + r .a (translation by r .a modulo 1).
Intervals y0, y1, . . . , yv−1 of length y , where y0 is the right-most interval
and yr = y0 + r .a (translation by r .a modulo 1).
Total number of points (or intervals): n = u + v (determined by induction).

In short: 2 primary intervals x0 (left) and y0 (right) + images.

Initial configuration: n = 2, u = v = 1.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 31 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Example: The First Configurations

with a = 17/45.

0

45

y
0

0

17

x
0 1

28

y
0

0

17

x
0 1

17

x
1 2

11

y
0

0

6

x
0 3

11

y
1 1

6

x
1 4

11

y
2 2

11

y
0

0

6

x
0 3

6

x
3 6

5

y
1 1

6

x
1 4

6

x
4 7

5

y
2 2

6

x
2 5

5

y
0

Note: scaling by 45 on the figure.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 32 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Example: The First Configurations [2]
with a = 17/45 and b = 24/45.

45

0

0

17 28

0 0

0 1

17 17 11

0 1 0

0 1 2

6 11 6 11 11

0 1 1 2 0

0 3 1 4 2

6 6 5 6 6 5 6 5

0 3 1 1 4 2 2 0

0 3 6 1 4 7 2 5

1 5 1 5 5 1 5 1 5 5 1 5 5

0 3 3 6 1 1 4 4 7 2 2 5 0

0 8 3 11 6 1 9 4 12 7 2 10 5

1 1 4 1 1 4 1 4 1 1 4 1 1 4 1 4 1 1 4 1 4

0 8 3 3 11 6 6 1 1 9 4 4 12 7 7 2 2 10 5 5 0

0 8 16 3 11 19 6 14 1 9 17 4 12 20 7 15 2 10 18 5 13

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 33 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

From a Configuration to the Next One

The main idea: when adding new points, one of the primary intervals (no inverse
image) is affected first, then all its images are affected in the same way.
For instance, see both intervals of length 17 on the figure.

Since a is irrational, n.a is strictly between two points of smaller indices, one
of which, denoted r is non zero.
Therefore the points of indices r − 1 and n − 1 (obtained by a translation)
are adjacent, and their distance ` is either x or y .
→ Same distance ` between the points of indices r and n.
Thus the new point n splits an interval of length h = max(x , y) into two
intervals of respective lengths ` = min(x , y) and h − `.
The length h − ` is new, therefore the corresponding interval does not have
an inverse image (i.e. by adding −a).
Therefore this interval has as a boundary point of index 0.

→ As a consequence, the point of index n is completely determined.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 34 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

From a Configuration to the Next One [2]

The other intervals of length h will be split in the same way, one after the other
with increasing indices (translations by a).

Indices of the intervals of length h − `: these are the indices of the
corresponding intervals of length h.
Indices of the intervals of length `: assume that ` = x (same reasoning for
` = y); the first interval of length x is obtained by a translation of an old
interval of length x (as shown in previous slide), necessarily xu−1 (the last
one) since the image of xi−1 is xi for all i < u. Thus this interval is xu and
we have xu = x0 + u.a. The next intervals: xu+1, xu+2, etc.

For the algorithm(s):

We only need to focus on what occurs in the primary intervals.
At the same time, we track the position of the point b:

I whether it is in an interval xk or in an interval yk ;
I its distance to the left endpoint of the interval.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 35 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

The Algorithms

Basic algorithm (1997): returns a lower bound d on {b − n.a} for n ∈ J0,N − 1K
(in fact, d is the exact distance for n ∈ J0,N ′ − 1K, where N ≤ N ′ < 2N).

Here: parameters chosen so that d ≥ d0 in most intervals, allowing to
immediately conclude that there are no worst cases in the interval.

New algorithm (mentioned in 1998): returns the index n < N of the first point
such that {b − n.a} < d0, otherwise any value ≥ N if there are no such points.

Gives the information we need, but uses an additional variable, so that it is slower.
Good replacement for the naive algorithm.

Another improvement: test with a shift (fast!) if it is interesting to replace a
sequence of iterations by a single one with a division.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 36 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

The Algorithms [2]

The necessary data:

the lengths x and y , and the numbers u and v of these intervals;

a binary value saying whether the point b is in an interval of length x or y ;

the index r of this interval (new algorithm only);

the distance d between b and the left endpoint of this interval.

Immediate consequence of the properties:

the left endpoint of an interval xr has index r ;

the left endpoint of an interval yr has index u + r .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 37 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Subtractive Version of the Algorithms

In red: additional statements for the new algorithm.

Initialization: x = {a} ; y = 1− {a} ; d = {b} ; u = v = 1 ; r = 0 ;
if (d < d0) return 0
Unconditional loop:
if (d < x)

while (x < y)
if (u + v ≥ N) return N
y = y − x ; u = u + v ;

if (u + v ≥ N) return N
x = x − y ;
if (d ≥ x) r = r + v ;
v = v + u;

else
d = d − x ;
if (d < d0) return r + u
while (y < x)

if (u + v ≥ N) return N
x = x − y ; v = v + u;

if (u + v ≥ N) return N
y = y − x ;
if (d < x) r = r + u;
u = u + v ;

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 38 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Divisions Can Be Introduced
But for most iterations (small partial quotient), a succession of subtractions is
faster. → LOGMS parameter (the value 3 seemed to be the best choice).

Excerpt of generated code
if (LOGMS == 0 || (LOGMS < 64 && (y >> LOGMS) > x))

{
uint64_t q = y / x;
TESTEND(q >= N); /* avoid overflow below */
y -= (unsigned int) q * x;
u += (unsigned int) q * v;

}
else

while (x < y)
{

TESTEND(u + v >= N);
y -= x;
u += v;

}

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 39 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Divisions Can Be Introduced [2]

Notations for the following timings:

Option c=k : a succession of subtractions are replaced by a single division
when one needs to do at least 2k subtractions without modifying the value d
(−: subtractive algorithm only).

Algorithm selection:

− l=3 w old w
default basic basic basic new
if failed naive 8-split new
if failed naive

8-split: the interval is split into 23 = 8 subintervals and the basic algorithm is
tried again.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 40 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Divisions Can Be Introduced [3]
Tests on a 2GHz AMD Opteron (2005).

exp x , exponent 0 2x , exponent 0
c − l=3 w old w − l=3 w old w
0 42.30 35.46 35.26 (39.22) 37.83 32.95 32.82 (49.24)
1 26.32 19.27 19.09 (18.40) 23.83 18.72 18.67 (20.45)
3 24.09 16.82 16.85 (16.67) 22.21 16.96 17.04 (18.79)
5 24.47 17.29 17.29 (16.76) 23.23 18.03 18.08 (19.04)
− 21.54 14.23 14.26 (15.38) 21.68 16.42 16.52 (18.36)

sin x , exponent 0 cos x , exponent 0
c − l=3 w old w − l=3 w old w
0 40.24 31.72 31.67 (42.88) 39.08 33.52 33.51 (36.04)
1 28.28 19.52 19.49 (19.58) 25.87 20.10 20.18 (19.61)
3 26.41 17.54 17.55 (17.72) 22.76 16.93 17.08 (17.11)
5 27.15 18.36 18.32 (17.55) 23.15 17.29 17.47 (17.24)
− 23.71 14.74 14.85 (16.11) 19.99 14.12 14.30 (15.20)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 41 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Divisions Can Be Introduced [4]
Tests on a 2GHz AMD Opteron (2005).

exp x , exponent − 6 2x , exponent − 6
c − l=3 w old w − l=3 w old w
0 18.29 18.15 18.09 (59.08) 21.42 21.31 21.27 (81.95)
1 12.54 12.52 12.51 (18.05) 13.27 13.18 13.16 (22.15)
3 12.10 11.95 11.86 (17.07) 12.84 12.91 12.68 (21.26)
5 14.41 14.31 14.16 (17.65) 14.67 14.56 14.54 (22.34)
− 22.13 21.94 21.97 (26.25) 17.62 17.40 17.44 (21.31)

sin x , exponent − 6 cos x , exponent − 6
c − l=3 w old w − l=3 w old w
0 15.74 15.56 15.59 (16.21) 15.61 15.43 15.44 (19.10)
1 10.22 10.06 10.10 (9.79) 10.72 10.57 10.58 (10.74)
3 9.45 9.25 9.26 (9.33) 10.12 9.99 10.04 (10.58)
5 9.34 9.16 9.20 (9.30) 10.50 10.30 10.33 (10.72)
− 314.8 314.3 314.6 (369.9) 161.3 161.1 161.1 (188.6)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 42 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Example of Domain Splitting

Input interval [1, 2[decomposed into 213 = 8192 sub-intervals I.

For each sub-interval I of size 240:
Function f is approximated by a degree-d polynomial.
Code (C with the mpn layer of GMP) is generated: my algorithm is applied on
sub-intervals J of 215 = 32768 points (64-bit integer arithmetic), and in case
of failure, 212 = 4096 (or 211 = 2048) points, and if this still fails, the naive
method (difference table). Note: this can probably be improved, e.g. larger
intervals J (with 128-bit arithmetic?), variant instead of the naive method. . .
If GCC is used, the code is compiled using -fprofile-generate and tested
on the first 28 = 256 sub-intervals (for up to 22% speed-up on Opteron).
The code is recompiled using -fprofile-use and run.

The accuracy (chosen for efficiency) is not sufficient to determine the worst cases.
A second filter step is necessary: conventional algorithm (much slower but run on
much fewer inputs) on each potential worst case.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 43 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Polynomial Degree and Coefficient Size

Examples with a 54-bit significand and splitting into intervals of size 240.

For some functions and left endpoints of the interval, the table gives the degree of
the polynomial and the size (in bits) of the coefficient of highest degree.

function x0 degree size
exp x 1 6 320
exp x 8 7 352
exp x 64 9 416
log x 2 6 320
log x 21000 6 320
x4 1 4 224
x17 1 8 384
x345 1 12 544
x2065 1 18 736
x2065 2− ε 15 640

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 44 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Timings (Example)

Note: timings can differ from an interval to the other and parameters may not be
optimal, but the following timings give orders of magnitude. . .

Timings in seconds on a recent machine (Intel Xeon E5520 at 2.27GHz, only one
core used) for function exp:

Exponent Interval
0 8191

0 11.8 11.8
1 12.4 12.2
2 16.2 15.8
3 22.0 20.0
4 34.7 37.3
5 51.6 58.4
6 84.1 92.1
7 209 177

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 45 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm: the Problem

My algorithm: limited to degree-1 polynomials.
Algorithm working with degree-d polynomials and asymptotically faster?

Real Small Value Problem (Real SValP)
Given positive integers M and T , and a polynomial P ∈ R[X],
find all integers |t| < T such that:

|P(t) mod 1| < 1
M

Integer Small Value Problem
Given P ∈ Z[X] of degree d , find on which small integer entries it has small
values modulo a large integer N, i.e. find the small integer roots of

Q(x , y) = P(x) + y (mod N)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 46 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm: the Problem

My algorithm: limited to degree-1 polynomials.
Algorithm working with degree-d polynomials and asymptotically faster?

Real Small Value Problem (Real SValP)
Given positive integers M and T , and a polynomial P ∈ R[X],
find all integers |t| < T such that:

|P(t) mod 1| < 1
M

Integer Small Value Problem
Given P ∈ Z[X] of degree d , find on which small integer entries it has small
values modulo a large integer N, i.e. find the small integer roots of

Q(x , y) = P(x) + y (mod N)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 46 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm: the Problem

My algorithm: limited to degree-1 polynomials.
Algorithm working with degree-d polynomials and asymptotically faster?

Real Small Value Problem (Real SValP)
Given positive integers M and T , and a polynomial P ∈ R[X],
find all integers |t| < T such that:

|P(t) mod 1| < 1
M

Integer Small Value Problem
Given P ∈ Z[X] of degree d , find on which small integer entries it has small
values modulo a large integer N, i.e. find the small integer roots of

Q(x , y) = P(x) + y (mod N)

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 46 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm: Lattice Reduction Theory / LLL

Lattice: a discrete subgroup of Rn.

L =

{∑̀
i=1

nibi | ni ∈ Z

}

where the bi ’s are linearly independent vectors.

Let {b1, . . . ,b`} be a basis of a lattice L ⊂ Zn. The well-known LLL algorithm
computes, in time polynomial in the bit length of the input, a basis {v1, . . . , v`}
satisfying:

||v1|| ≤ 2 `
2 det(L) 1

` ;
||v2|| ≤ 2 `

2 det(L)
1

`−1 .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 47 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm: Coppersmith’s Technique

Without details. . .

Let α be a positive integer. One considers the family of polynomials

Qi,j(x , y) = x i Qj(x , y)Nα−j

with 0 ≤ i + dj ≤ dα.

If (x0, y0) is a root of Q modulo N, then it is a root of each Qi,j modulo Nα.

LLL → two polynomials v1(x , y) and v2(x , y) linear combinations of the Qi,j ’s,
which take small values (< Nα) for small x and y , i.e. |x | ≤ X and |y | ≤ Y .

Thus, if (x0, y0) is a root of v1 and v2 modulo Nα, then it is also a root on Z.
→ Search for x0 by finding the integer roots of the resultant Resy (v1, v2) ∈ Z[x],
assuming Resy (v1, v2) 6= 0.

Note about X and Y : one can show that X dY = O(N).

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 48 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

SLZ Algorithm
Input: function f , positive integers N, T , M, d , α.

1 P(t): Taylor expansion of N f (t/N) up to order d ; n = (α+1)(dα+2)
2 .

2 Compute ε such that |P(t)− N f (t/N)| < ε for |t| ≤ T .

3 M ′ =
⌊

1/2
1/M + ε

⌋
, C = (d + 1)M ′ and P ′(x) = 1

C bCP(Tx)e.

4 {e1, . . . , en} ← {x iy j} for 0 ≤ i + dj ≤ dα.
5 {g1, . . . , gn} ← {Cα(Tx)i(P ′(x) + y

M′)
j} for 0 ≤ i + dj ≤ dα.

6 Form the integral matrix L where Lk,` is the coefficient of ek in g`.
7 V ← C−αLatticeReduce(L).
8 v1 and v2: the two smallest vectors from V ;

p1 and p2: corresponding polynomials.
9 If ∃ x , y ∈ [−1, 1] with |p1(x , y)| ≥ 1 or |p2(x , y)| ≥ 1, then return FAIL.
10 p(t)← Resy (p1(t/T , y), p2(t/T , y)).

If p = 0, then return FAIL (should never occur).
11 For each root t0 ∈ [−T ,T] of p, check whether it is a bad case.

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 49 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Periodical Functions with Large Arguments

The described methods work well only if the function can be approximated by a
small-degree polynomial. Not the case with large arguments for:

exponentials, but one gets an overflow before the problem becomes too hard;
periodical functions: deductions if the period is a rational, otherwise. . .

The problem: consecutive arguments are not close to each other modulo 2π.

But consider a whole binade [2e , 2e+1[, and all the reduced arguments modulo 2π:
the average distance between two consecutive values is similar to the one for basic
functions. The arguments are just in the wrong order!

Moreover 2e + k. ulp(2e) mod 2π is just like k.a mod 1.

An idea: extract subsequences in arithmetic progression.

Or any hope to use more properties of k.a mod 1?

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 50 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Results
Worst cases for the double-precision functions:

ex , 2x , 10x , sinh, cosh, sin(2πx), cos(2πx);
xn for 3 ≤ n ≤ 2381 and −180 ≤ n ≤ −2;
sin, cos, tan between −π/2 and π/2;
the corresponding inverse functions.

A few bad cases:
x = 1.1110000100101101011001100111010001001111111110000001× 2429:

log10 x = 10000001.0110101001111010100110
11100101001111001000100 1 000 . . . 000︸ ︷︷ ︸

68 bits

10 . . .

x = 1.1101110010111010000011000100100010110011111100101001× 2253:
x1/1039 = 1.00101111010000000010011110110

= 01001011010110011011111 0 111 . . . 111︸ ︷︷ ︸
73 bits

01 . . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 51 / 51

[sieste2010.tex 35790 2010-03-23 09:25:43Z vinc17/xvii]

Results
Worst cases for the double-precision functions:

ex , 2x , 10x , sinh, cosh, sin(2πx), cos(2πx);
xn for 3 ≤ n ≤ 2381 and −180 ≤ n ≤ −2;
sin, cos, tan between −π/2 and π/2;
the corresponding inverse functions.

A few bad cases:
x = 1.1110000100101101011001100111010001001111111110000001× 2429:

log10 x = 10000001.0110101001111010100110
11100101001111001000100 1 000 . . . 000︸ ︷︷ ︸

68 bits

10 . . .

x = 1.1101110010111010000011000100100010110011111100101001× 2253:
x1/1039 = 1.00101111010000000010011110110

= 01001011010110011011111 0 111 . . . 111︸ ︷︷ ︸
73 bits

01 . . .

Vincent LEFÈVRE (INRIA / LIP, ENS-Lyon) Correct Rounding of Mathematical Functions SIESTE, 2010-03-23 51 / 51

	Outline
	Introduction: Floating-Point Arithmetic
	Floating-Point Formats
	Rounding Direction Attributes (IEEE 754)
	Correct Rounding
	Rounding the Elementary Functions
	Ziv's Strategy
	Implementations of Elementary Functions

	Relation with Programming Languages
	Evaluating a Sine
	How About Arithmetic Operations?

	Solving the Table Maker's Dilemma: Introduction
	The Form of Bad Cases in Radix 2
	Estimating the Minimum Distance d
	Correct Rounding of Math Functions in GNU MPFR
	Solving the TMD in Fixed, Small Precision
	Search for Worst Cases: History
	Search for Worst Cases: the Problem
	Computing the Successive Values of a Polynomial
	Hierarchical Approximations by Polynomials
	Implementation

	Solving the Table Maker's Dilemma: L-Algorithm
	L-Algorithm: the Problem With a Degree-1 Polynomial
	The Three-Distance Theorem
	Notations / Properties of k.a mod 1 (0 <= k < n)
	Example: The First Configurations
	From a Configuration to the Next One
	The Algorithms
	Subtractive Version of the Algorithms
	Divisions Can Be Introduced
	Example of Domain Splitting
	Polynomial Degree and Coefficient Size
	Timings (Example)

	Solving the Table Maker's Dilemma: SLZ Algorithm
	SLZ Algorithm: the Problem
	SLZ Algorithm: Lattice Reduction Theory / LLL
	SLZ Algorithm: Coppersmith's Technique
	SLZ Algorithm

	Solving the Table Maker's Dilemma: Periodical Functions with Large Arguments
	Results

