Génération de coefficients de polynômes d'approximation sur des sous-intervalles, avec bornes d'erreur garanties

Vincent LEFÈVRE

Arénaire, INRIA Grenoble - Rhône-Alpes / LIP, ENS-Lyon

Journées TaMaDi, Sophia Antipolis, 2011-02-22

Plan

- Introduction
- Approximation d'une fonction par un polynôme
- Vers des polynômes de plus petits degrés
- Passage d'un sous-intervalle au suivant
- Analyse d'erreur
- Futur

Introduction

Contexte/but: résoudre le Dilemme du Fabricant de Tables dans un système à virgule flottante en base β (2 ou 10) à précision p.

Données:

- Fonction mathématique f sur un intervalle I, e.g. de la forme $[\beta^k, \beta^{k+1}[$ ou un sous-découpage (e.g. 2^{13} sous-intervalles).
- Entrées : valeurs x_i en progression arithmétique sur I (des nombres machine du système VF, ou des entiers après changement de variable).
- Sorties: valeurs approchées de $f(x_i)$, avec une borne d'erreur ε_0 garantie (imposée en entrée), e.g. $\varepsilon_0 \approx 2^{-30}$ ulp.

Notes:

- La fonction f devra être « numériquement régulière » (pas $\sin x$ avec $x \gg \pi$).
- On n'aura pas besoin de calculer toutes les valeurs $f(x_i)$, mais le problème reviendra au même (du point de vue de la précision).
- On n'aura besoin que des valeurs modulo leur ulp.

Plage d'exposants de sortie

- L'intervalle I sera choisi de manière à ce que l'exposant des valeurs $f(x_i)$ de la fonction **change peu**, et dans l'idéal il ne change pas du tout.
- On se ramènera ainsi à du calcul en **virgule fixe**, beaucoup plus efficace que la virgule flottante, surtout dans ce contexte où...
- On pourra se ramener à du calcul modulo l'ulp, enfin presque, car l'ulp peut changer (on peut considérer le maximum pour le calcul, et le minimum pour le test interne, cf discussion dans ma thèse).

```
Exposant minimum: mmmmmm...mmmmmmtttt...tttx
Exposant maximum: mmmmmm...mmmmmxxxxxtttt...tttx
```

Question pour plus tard: compromis entre le choix de la taille de I et les variations de l'exposant de sortie?

Le point essentiel : virgule fixe modulaire.

Approximation d'une fonction par un polynôme

On va approcher la fonction f par des polynômes.

- Je montrerai que cela permet d'avoir des algorithmes rapides.
- En plus, c'est compatible avec la virgule fixe modulaire.

Problème initial: approcher la fonction f par un polynôme P sur I, avec une borne d'erreur ε_f garantie, typiquement une fraction de la borne d'erreur ε_0 finale.

Ce n'est pas le sujet de cet exposé \to peu de détails dans ce qui suit. On suppose que l'on dispose d'outils fournissant les coefficients de l'approximation en question (et éventuellement une meilleure borne d'erreur $\varepsilon_f' < \varepsilon_f$).

On pourra faire d'autres approximations, avec une erreur bornée par $\varepsilon_1=\varepsilon_0-\varepsilon_f'$ (ou $\varepsilon_0-\varepsilon_f$), par exemple :

- approcher P par des polynômes de plus petit degré,
- approcher les coefficients par des valeurs à plus faible précision,
- effectuer les opérations de manière approchée.

Approximation d'une fonction par un polynôme : implémentation actuelle

Implémentation actuelle: formule de Taylor.

Ce n'est pas la meilleure approximation, mais:

- facile et rapide (pour une approximation générique) à calculer;
- l'erreur peut être facilement majorée;
- bon compromis entre précision et rapidité de calcul (?);
- on peut déterminer le degré du polynôme dynamiquement (rappel : la borne d'erreur est fournie en entrée).

Conséquence par rapport à une approximation minimax: le degré est plus grand. Mais un découpage en sous-intervalles permettrait de faire diminuer le degré, cf approximations hiérarchiques (plus loin).

À faire : tests pour comparer les deux types de méthodes (ou autres).

Approximation d'une fonction par un polynôme : détermination de l'erreur

• Erreur d'approximation. Par exemple : troncature de la série de Taylor. En posant $t = x - x_0$:

$$f(x) = f(x_0) + \frac{f^{(1)}(x_0)}{1!}t + \frac{f^{(2)}(x_0)}{2!}t^2 + \dots + \frac{f^{(d)}(x_0)}{d!}t^d + R(x)$$

$$R(x) = \int_0^x \frac{f^{(d+1)}(u)}{u!}(x-u)^d du \operatorname{dong} |R(x)| \le \frac{M \cdot T^{d+1}}{u!} \text{ où}$$

avec
$$R(x) = \int_{x_0}^x \frac{f^{(d+1)}(u)}{d!} (x-u)^d du$$
, donc $|R(x)| \leq \frac{M \cdot T^{d+1}}{(d+1)!}$, où $|f^{(d+1)}(u)| \leq M$ et $|t| \leq T$.

- Arrondi des coefficients. On peut cependant considérer les coefficients comme étant exacts,
 - soit parce que leur représentation à une précision fixée a été prise en compte dans l'algorithme d'approximation,
 - soit parce qu'on les considère initialement comme étant des réels. La raison : on va faire d'autres calculs approchés sur ces coefficients, et les majorations des erreurs d'arrondi pourront tenir compte des arrondis initiaux à ce moment-là.

7 / 29

Vers des polynômes de plus petits degrés

Polynôme de degré d sur $I \to se$ ramener à des **polynômes de petit degré** d' sur intervalles J_n , pour efficacité ou par limitation (degré 1 pour le L-algorithme).

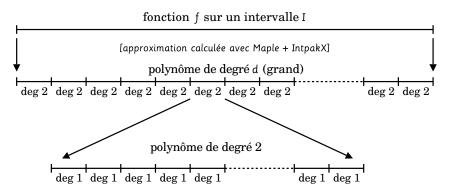
- Approximations valides sur de petits intervalles. Plus d' est petit, plus les intervalles J_n seront petits, et plus il y aura d'approximations à faire.
- Plus d est grand, plus les approximations demanderont de calculs (en supposant que le coefficient de degré d ne puisse pas être ignoré).

Pour déterminer rapidement les approximations :

- **Approximations hiérarchiques**, i.e. découper récursivement en sous-intervalles, et diminuer le degré *d* à chaque découpage.
 - Avantage: la contribution des plus grands degrés est déterminée moins souvent (pour moins de sous-intervalles).
 - ▶ Inconvénient : on introduit *a priori* des erreurs supplémentaires.
- Passer d'un intervalle J_n au suivant, i.e. utiliser le fait qu'on connaît une approximation dans l'intervalle précédent.

Approximations hiérarchiques

Exemple d'implémentation (\sim implémentation actuelle) :



Généralisation : découpage en un plus grand nombre de niveaux.

Approximations hiérarchiques: exemple d'instantiation

Exemple simplifié pour donner des ordres de grandeurs...

- Base 2, double précision (p = 53, mais nombres machine de 54 bits pour pouvoir déterminer les pires cas de la réciproque).
- $2^{13} = 8192$ intervalles I par exposant: 2^{40} valeurs, degré d = 6 pour $\exp([1, 1 + 2^{-13}])$.
- 2^{25} sous-intervalles $J: 2^{15} = 32768$ valeurs, degré 2.
- Degré $2 \rightarrow$ degré 1 sur J (en négligeant le coefficient de degré 2) pour application du L-algorithme (non décrit ici).

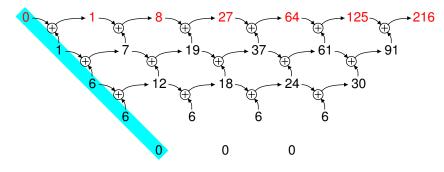
Si échec:

- ▶ découpage de J en 8 sous-intervalles K de taille 4096, degré 2;
- ▶ degré 2 \rightarrow degré 1 sur K pour application du L-algorithme;
- ▶ si échec, différences tabulées (cf transparent suivant) en degré 2 sur K.

Dans la réalité : certaines étapes peuvent être sautées, variantes.

Calcul des valeurs successives d'un polynôme

Exemple: $P(X) = X^3$. Table des différences:



Coefficients dans la base
$$\left\{1, X, \frac{X(X-1)}{2}, \frac{X(X-1)(X-2)}{3!}, \ldots\right\}$$
.

Avantages: uniquement quelques additions par itération, calcul modulo l'ulp.

Représentation et calcul approché des coefficients

Donnée: polynôme
$$Q(X) = \sum_{i=0}^{\delta} a_i \cdot {X \choose i}$$
 de degré δ .

Les coefficients a_i seront représentés par des éléments $\hat{a}_i \in u_i \mathbb{Z}$ où $u_i = \beta^{-p_i}$, avec une erreur initiale inférieure à u_i , et où la suite (p_i) des précisions est croissante.

$$\label{eq:Adaptive problem} \grave{\mathsf{A}} \; \mathsf{chaque} \; \mathsf{it\acute{e}ration} \colon \left\{ \begin{array}{lll} \hat{\mathsf{a}}_0 & = & \hat{\mathsf{a}}_0 & + & \circ(\hat{\mathsf{a}}_1) \\ \hat{\mathsf{a}}_1 & = & \hat{\mathsf{a}}_1 & + & \circ(\hat{\mathsf{a}}_2) \\ & & \vdots & & \\ \hat{\mathsf{a}}_{\delta-1} & = & \hat{\mathsf{a}}_{\delta-1} & + & \circ(\mathsf{a}_\delta) \end{array} \right.$$

Coefficients trongués \rightarrow accumulation d'erreurs $\langle u_i \text{ sur } a_i \rangle$

Note: dans la pratique, on peut considérer que les coefficients a_i initiaux sont exacts (cf transparent 7). Donc on a une borne d'erreur initiale $\epsilon_i(0)$ sur a_i :

$$\begin{cases} \epsilon_i(0) &= u_i \quad \text{pour tout } 0 \leqslant i < \delta, \\ \epsilon_{\delta}(0) &= 0 \quad \text{(arrondi pris en compte lors des additions)}. \end{cases}$$

Passage d'un sous-intervalle au suivant

Problème: passer très rapidement d'un sous-intervalle au suivant, i.e. mettre à jour l'approximation polynomiale.

Deux méthodes (idées de départ décrites dans ma thèse):

- Mise à jour des coefficients en tenant compte des calculs qui n'ont pas été effectués.
- Utiliser le fait que les intervalles sont de même longueur, i.e. leur origine est en progression arithmétique.
 - → Problème similaire au calcul des valeurs successives d'un polynôme, les coefficients étant vus comme des polynômes.

Méthode 1: mise à jour des coefficients

De manière générale, cela revient à déterminer les coefficients des polynômes $P_{n+1}(X) = P_n(X+k)$, où k est la taille du sous-intervalle, puis à négliger les coefficients de degré > d'.

Avec la base des

$$\binom{X}{i} = \frac{X(X-1)(X-2)...(X-i+1)}{i!}$$

(est-ce ici le meilleur choix?), on simule la méthode à base de table des différences.

En notant les coefficients initiaux a_i $(0 \le i \le d)$, il suffit d'ajouter $\binom{k}{i}a_j$ à a_{j-i} pour $1 \le i \le j \le d$.

S'ils sont connus et exacts, utiliser les coefficients finaux. $\rightarrow j > d'$.

lci, k est constant. \rightarrow Multiplications par des constantes entières.

Application de la méthode 1

Cette méthode n'est utilisée qu'à un seul endroit dans mon code : pour passer d'un intervalle K au suivant (ajout du 2003-02-13).

• Lorsque l'algo rapide a réussi (LOGL = $\log_2 \# K$ ci-dessous):

```
a0 += a1 << LOGL;
a1 += a2 << LOGL;
a0 += (a2 << (2 * LOGL - 1)) - (a2 << (LOGL - 1));
```

• En cas d'échec, les coefficients ont été mis à jour par la méthode naïve (cf note sur les coefficients finaux, avec d' = d).

Dans mon code, les trois coefficients ont la même précision (64 bits), donc le calcul est exact (aucune erreur d'arrondi).

Pour passer d'un intervalle J au suivant, j'utilise la méthode 2...

Méthode 2 : coefficients vus comme des polynômes

Idée générale: Les coefficients (initiaux) des polynômes de degré d' sont vus comme les valeurs successives de polynômes.

ightarrow Chaque coefficient s'obtient avec la méthode à base de table de différences.

Notations et définitions :

- Polynôme P de degré d.
- Dans chaque sous-intervalle J_n : polynôme P_n de degré d.

$$P_n(m) = P(kn + m) = \sum_{i=0}^d a_i(n) \cdot \binom{m}{i}$$

où $0 \le m < k$.

• P_n est approché par P'_n de degré d':

$$P'_n(X) = \sum_{i=0}^{d'} a_i(n) \cdot {X \choose i}.$$

Méthode 2 : coefficients vus comme des polynômes [2]

On note ΔP le polynôme tel que $\Delta P(X) = P(X+1) - P(X)$. $\Delta^i P$ est un polynôme de degré d-i.

On cherche à calculer les coefficients : $a_i(n) = \Delta^i P_n(0) = \Delta^i P(kn)$. \rightarrow Les a_i sont des polynômes en n de degré d - i.

Les coefficients de ces polynômes $a_i(n+X)$ à l'itération n dans la base des $\binom{X}{j}$ sont : $a_{i,j}(n) = \Delta^j a_i(n)$. On cherche : $a_i(n) = a_{i,0}(n)$.

On les calcule lors du passage du sous-intervalle J_n au suivant J_{n+1} avec :

$$a_{i,j}(n+1) = a_{i,j}(n) + a_{i,j+1}(n)$$
 pour $\begin{cases} 0 \leqslant i \leqslant d' \\ 0 \leqslant j \leqslant d-i-1 \end{cases}$

 $(a_{i,d-i} \text{ étant constant})$. On obtient ainsi les $a_i(n+1)$.

Initialisation : calcul des $a_{i,j}(0)$.

Application de la méthode 2

Problème: pour chaque sous-intervalle, calcul des coefficients des polynômes de degré 2 approchant un polynôme de degré d = 6 pour $\exp([1, 1 + 2^{-13}])$.

3 coefficients pour P'_n : a_0 (degré 6), a_1 (degré 5), a_2 (degré 4).

Le code généré est prévu pour tourner sur machines 32 bits et 64 bits (grâce au préprocesseur). Les p_i sont donc déterminés pour être des multiples de 32 :

$$\begin{cases} p_0 &= 4 \times 32, \\ p_1 &= 5 \times 32, \\ p_2 &= 6 \times 32, \\ p_3 &= 7 \times 32, \\ p_4 &= 9 \times 32, \\ p_5 &= 10 \times 32, \\ p_6 &= 10 \times 32. \end{cases}$$

Les transparents suivants donnent les valeurs initiales (pour machines 64 bits, mots stockés en *little endian*, modulo 1).

Application de la méthode 2 : coefficient a_0 (degré 6)

Code:

Mis sous forme plus lisible:

```
      a0_0
      =
      A6ABF7160809CF4F
      3C762E7160F38B4E

      a0_1
      =
      5458A4173B436123
      9CA0E833FEB6C885
      ABFCA8C9

      a0_2
      =
      0000002B7E1516295
      CCAFB049B66C0BEA
      354AA25BAAB8404F

      a0_3
      =
      00000000000000
      DF85458A6CF1C94C
      3BA51465E493E36F
      D8890AB5

      a0_4
      =
      000000000000000
      00000002B7E1516
      2A0AC34F5D426FDA
      C4D9DF953D0EDFFB
      16FE1543

      a0_5
      =
      0000000000000000
      000000000000000
      00D4DF85458A986FD
      E62637A70A321BD8
      4F1A4229E540A478

      a0_6
      =
      000000000000000
      00000000000000000
      00000000000000000
      15628AED2A6ABF71
      58809CF4F3C762E7
```

Optimisation possible: suppression de certains mots 0 de poids fort (et -1 dans le cas de petits coefficients négatifs). Cela demande de déterminer (au moment de générer le code) des plages des valeurs possibles.

Application de la méthode 2 : coefficient a_1 (degré 5)

Code:

```
uint64 t a1 0[] = \{ 0x225B715628DDCEBF, 0x5BF0A8B145769AA5 \};
uint64 t a1 1[] = { 0x8A29425F00000000, 0xC520B9EFDA13A7F9,
                 0x00000000056FC2A2 }:
uint64 t a1 2[] = { 0xD47E77DFB318E888, 0x0015BF0A8B14AE65,
                 0x000000000000000000 }:
uint64 t a1 3[] = \{ 0xD9F0CD6100000000, 0x2A2C53678FA65285, 
                 uint64 t a1 4[] = { 0xCD14C49700000000, 0x561FEAAC8725FFD3,
                 0x0000000000000000000 }:
uint64 t a1 5[] = { 0x7EE2B10139E9E78F, 0x6FC2A2C515DA54D5,
                 0x000000000000005, 0x000000000000000,
                 0x0000000000000000000 }:
```

Mis sous forme plus lisible:

```
a1 0 = 5BF0A8B145769AA5 225B715628DDCEBF
a1 1 = 00000000056FC2A2 C520B9EFDA13A7F9 8A29425F
a1 2 = 0000000000000000 0015BF0A8B14AE65 D47E77DFB318E888
a1 3 = 0000000000000000 0000000000056FC 2A2C53678FA65285 D9F0CD61
```

Application de la méthode 2 : coefficient a_2 (degré 4)

Code:

Mis sous forme plus lisible:

```
      a2_0 =
      00000000000000ADF
      85458A2BB500A728

      a2_1 =
      0000000000000000
      0000002B7E151629
      05D02CC9

      a2_2 =
      000000000000000
      0000000000000
      ADF85458A573315C

      a2_3 =
      000000000000000
      00000000000000
      0000000000000000

      a2_4 =
      000000000000000
      000000000000000
      000000000000000
      00000000000000
```

Note: encore plus de 0 à supprimer, et le mot de poids faible de a2_4 (0xA9AAFDC500000000) est inutile.

Application de la méthode 2 : additions (code)

```
do
    next:
#if GMP LIMB BITS == 32
[...]
#else
      mpn_add_n((mp_limb_t *) a0_0, (mp_limb_t *) a0_0, (mp_limb_t *) a0_1 + 1, 2);
      mpn_add_n((mp_limb_t *) a0_1, (mp_limb_t *) a0_1, (mp_limb_t *) a0_2 + 0, 3);
      mpn add n((mp limb t *) a0 2, (mp limb t *) a0 2, (mp limb t *) a0 3 + 1, 3);
      mpn_add_n((mp_limb_t *) a0_3, (mp_limb_t *) a0_3, (mp_limb_t *) a0_4 + 1, 4);
      mpn add n((mp limb t *) a0 4, (mp limb t *) a0 4, (mp limb t *) a0 5 + 0, 5);
      mpn add n((mp limb t *) a0 5, (mp limb t *) a0 5, (mp limb t *) a0 6 + 0, 5);
      mon add n((mp limb t *) a1 0. (mp limb t *) a1 0. (mp limb t *) a1 1 + 1. 2):
      mpn add n((mp limb t *) a1 1, (mp limb t *) a1 1, (mp limb t *) a1 2 + 0, 3);
      mpn_add_n((mp_limb_t *) a1_2, (mp_limb_t *) a1_2, (mp_limb_t *) a1_3 + 1, 3);
      mpn_add_n((mp_limb_t *) a1_3, (mp_limb_t *) a1_3, (mp_limb_t *) a1_4 + 1, 4);
      mpn add n((mp limb t *) a1 4, (mp limb t *) a1 4, (mp limb t *) a1 5 + 0, 5);
      mpn_add_n((mp_limb_t *) a2_0, (mp_limb_t *) a2_0, (mp_limb_t *) a2_1 + 1, 2);
      mpn add n((mp limb t *) a2 1, (mp limb t *) a2 1, (mp limb t *) a2 2 + 0, 3);
      mpn add n((mp limb t *) a2 2, (mp limb t *) a2 2, (mp limb t *) a2 3 + 1, 3);
      mpn add n((mp limb t *) a2 3. (mp limb t *) a2 3. (mp limb t *) a2 4 + 1. 4):
#endif
  while (i -= K):
```

22 / 29

Analyse d'erreur

On note essentiellement 3 types d'erreur:

- Approximation de la fonction f par un polynôme P.
 Termes d'erreur: reste et arrondi éventuel de chaque coefficient.
 - \rightarrow Borne d'erreur ε_f ou ε_f' (calcul non abordé ici).
- Approximation du polynôme P de degré d par un polynôme P'_n de degré $d' \leq d$, en négligeant les coefficients de degré > d'.
 - \rightarrow Erreur ε_p (transparent 25).
- Méthode à base de table de différences (y compris dans la méthode 2): représentation approchée des coefficients.
 - \rightarrow Erreur ε_c (transparent 26).

Le calcul de bornes sur ε_p et ε_c se fait en considérant la table des différences...

Table des différences et bornes d'erreur

Polynôme
$$Q(X) = \sum_{i=0}^{\delta} a_i \cdot {X \choose i}$$
 de degré δ .

On considère le calcul approché des valeurs successives de ce polynôme par table des différences.

La contribution d'un coefficient a_i sur une valeur Q(m) est : $a_i \cdot {m \choose i}$.

- Si un degré i est ignoré (cas de l'approximation de P par P'_n), l'erreur correspondante sera de $a_i \cdot {m \choose i}$.
- Si a_i est pris en compte dans le calcul, une erreur (ou borne d'erreur) ϵ_i sur le coefficient a_i donnera une erreur (ou borne d'erreur) de la forme $\epsilon_i \cdot \binom{m}{i}$ sur la valeur à l'itération m.

Note: ignorer un coefficient a_i revient à dire que l'erreur correspondante sur ce coefficient est de a_i (le premier point ci-dessus est donc un cas particulier du second).

Approximation de P par P'_n : analyse d'erreur

Notations: K = #I et $k = \#J_n$ avec k|K, e.g. $K = 2^{40}$ et $k = 2^{15}$.

On a:

$$\begin{aligned} |\varepsilon_p| &= |P(kn+m) - P'_n(m)| = |P_n(m) - P'_n(m)| \\ &= \left| \sum_{i=d'+1}^d a_i(n) \cdot {m \choose i} \right| \leqslant \sum_{i=d'+1}^d |a_i(n)| \cdot {k-1 \choose i} \end{aligned}$$

avec
$$a_i(n) = \Delta^i P(kn) = \sum_{j=i}^d a_j(0) \cdot \binom{kn}{j-i}$$
, ce qui donne:

$$\left| |arepsilon_{eta}| \leqslant \sum_{j=d'+1}^{d} |a_j(0)| \sum_{i=d'+1}^{j} {K-k \choose j-i} {k-1 \choose i}
ight|$$

Note: majoration optimale si $a_i(0) \ge 0$ pour tout $j \ge d' + 1$.

Calcul approché des coefficients : analyse d'erreur

Soit $\epsilon_i(m)$ une majoration de l'erreur sur a_i à l'itération m.

Majorations aux limites:
$$\begin{cases} \epsilon_i(0) = u_i & \text{pour tout } 0 \leqslant i < \delta, \\ \epsilon_{\delta}(m) = 0 & \text{pour tout } m \geqslant 0. \end{cases}$$

Relation de récurrence: $\epsilon_i(m) = \epsilon_i(m-1) + \epsilon_{i+1}(m-1) + u_i$.

On en déduit :
$$\epsilon_i(m) = \sum_{j=i}^{\delta-1} u_j \cdot \binom{m+1}{j-i+1}$$
.

En effet, c'est vrai pour m=0 et pour $i=\delta$, et $\epsilon_i(m-1)+\epsilon_{i+1}(m-1)+u_i=0$

$$u_{i} + \sum_{j=i+1}^{\delta-1} u_{j} \cdot {m \choose j-i} + \sum_{j=i}^{\delta-1} u_{j} \cdot {m \choose j-i+1}$$

$$= \sum_{i=i}^{\delta-1} u_{j} \cdot \left[{m \choose j-i} + {m \choose j-i+1} \right] = \sum_{i=i}^{\delta-1} u_{j} \cdot {m+1 \choose j-i+1} = \epsilon_{i}(m)$$

Par conséquent : $|\varepsilon_c| \leqslant \max \epsilon_0(m) \leqslant \sum_{i=0}^{\delta-1} u_i \cdot \binom{k}{i+1}$ où $0 \leqslant m \leqslant k-1$.

Choix de chaque borne d'erreur (mon implémentation)

La borne d'erreur finale ε_0 est déterminée suivant :

- la plage des exposants des valeurs de f sur l'intervalle;
- le nombre de bits testés (en paramètre, 32 par défaut).

Borne d'erreur maximale acceptable pour |f(x) - P(x)|, i.e. reste pour P à coefficients réels (arithmétique d'intervalles): $\varepsilon_f \leqslant \frac{1}{8}\varepsilon_0$.

 \rightarrow Détermination du degré d.

Borne pour les approximations suivantes : $\varepsilon_1 = \varepsilon_0 - \varepsilon_f$.

Borne d'erreur ε_p due à l'approximation de P_n par un polynôme P'_n de degré 2 sur J_n (coefficients sur 64 bits): $\varepsilon_p \leqslant \frac{4}{7}\varepsilon_1$.

 \rightarrow Détermination de la longueur k des sous-intervalles J_n (cf transparent 25).

Choix de chaque borne d'erreur (mon implémentation) [2]

Bornes d'erreur dues à l'approximation des coefficients dans $2^{-p_i}\mathbb{Z}$ telles que les coefficients a_0 , a_1 et a_2 soient calculés à 64 bits près...

```
\rightarrow Détermination des p_i (p_d = p_{d-1} car on stocke \circ(a_d) directement):
```

```
maple wr "errmax := 2^{-64}: err0 := 0:";
mv $ni = 2;
my @n;
for (\$i = 0; \$i < \$d; \$i++)
  { maple wr "b := binomial(np,$j+1):";
    n_+ + while (maple getint("errn_i := b * 2^(-n_i*32):\n".
      "r := errmax &- ((3/2) * errnj): signum(r[1])") < 0);
    maple wr "errmax := errmax &- errnj:";
    n[j] = nj; warn "nj = nj * 32\n"; 
n[4] = nj; warn "n4 = nj * 32\n";
my @n64 = map { ($ + 1) >> 1 } @n;
```

28 / 29

Futur

- Généraliser.
- Formaliser.
- Recentrer les polynômes pour diminuer l'erreur ou doubler la taille des intervalles.
- Supprimer les calculs sur les mots de poids fort qui valent toujours 0 (pour les valeurs positives) ou -1 (pour les valeurs négatives).